CcCOop8™

COP888 Feature Family User’s Manual

Customer Order Number COP8-888FAM-MAN
NSC Publication Number 420411060-001B
July 1994

ii

REVISION
A

REVISION RECORD

RELEASE DATE
03/89

07/94

SUMMARY OF CHANGES

First Release
COP888 User’s Manual
NSC Publication Number 420411060-001A

Reformatted and updated manual to include
information on new devices added to the COP888
Feature Family.

PREFACE

The COP888 Feature Family of 8-bit microcontrollers is ideally suited to embedded
controller applications such as keyboard interfaces, electronic telephones, home
appliances, and ABS systems. The design of this family takes advantage of National
Semiconductor’s M2CMOS™ manufacturing technology, providing a useful combination
of high performance, low power consumption, and reasonable cost. The rich instruction
set and flexible addressing modes of the COP888 controllers contribute to their high
performance and code efficiency.

This manual describes the features, architecture, instruction set, and usage of the
COP888 microcontrollers. The beginning chapters describe the general features found in
all family members. Later chapters describe the individual family members and their
specific features. The following specific devices are covered:

» COP888CL
+ COP888CG/EG/CS
+ COP888CF

Chapter 1, OVERVIEW, provides an overview of the COP888 family and compares the
features of different family members.

Chapter 2, ARCHITECTURE, describes the overall architecture of the COP888
microcontroller, including the CPU core, registers, memory organization, reset operation,
and clock options.

Chapter 3, INTERRUPTS, describes the device interrupts and how they are used. The
types of interrupts vary from one family member to another.

ntar 4 TIMERQ daceribags the gn-chin timers and the onar.

L
Unapeer &, 1inadinus, Gescrioes ine on-Calp imers and ineir gpera

number and types of timers vary from one family member to another

Chapter 5, MICROWIRE/PLUS, describes the microcontroller’s MICROWIRE/PLUS
serial interface and its operating modes.

Chapter 6, POWER SAVE MODES, describes the special operating modes in which the
microcontroller is shut down, reducing power consumption to a very low value while
maintaining the processor status and all register contents. All family members have a
HALT mode, and some also have an IDLE mode that maintains real time while the
processor is shut down.

Chapter 7, INPUT/OUTPUT, describes the input/output ports of the microcontroller and
how they are used. The number and types of ports vary from one family member to
another.

Chapter 8, WATCHDOG AND CLOCK MONITOR, describes an internal circuit
available in some COP888 devices that monitors the operation of the microcontroller and
reports an abnormal condition by issuing a signal on an output pin.

iii

Chapter 9, INSTRUCTION SET, describes the instruction set of the COP888
microcontrollers, including detailed descriptions of each instruction.

Chapters 10, 11, and 12 describe the specific features of different COP888 Feature
Family members.

Chapter 13, APPLICATION HINTS, provides additional information that may be useful
in implementing a design.

The Appendices cover hardware development tools, emulation devices, and device
electrical characterization data.

Additional information on specific COP888 Feature Family members is available from
their respective data sheets.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

COPS, M2CMOS are trademarks of National Semiconductor Corporation.

iv

CONTENTS

Chapter 1
1.1
1.2
1.3
Chapter 2

2.1
2.2
2.3

2.4

2.5

2.6
2.7

Chapter 3

3.6

Chapter 4

4.1
4.2
4.3
4.4

OVERVIEW
INTRODUCTIONt 1-1
BASICFEATURES i 1-1
DEVICE-SPECIFICFEATURES ooa.. 1-2
ARCHITECTURE
INTRODUCTIONt e e et e ea e 2-1
BLOCK DIAGRAM. e e e e 2-1
MEMORY ORGANIZATIONt eie e 2-2
2.3.1 Program Memoryccinitininnennnnnn.. 2-3
2.3.2 DataMemoryuiiiiiiieeannennnenn. 2-3
2.3.3 Memory-Mapped I/O Registers 2-7
CORE REGISTERSottt ettt e 2-8
24.1 Accumulator i e 2-8
2.4.2 Program Countero .. 2-9
2.4.3 Control Registerscoiitiiiniinnnn... 2-9
2.4.4 DataRegisters, 2-10
2.4.5 MICROWIRE/PLUS Register 2-12
2.4.6 Timer Registers 2-12
CPUOPERATIONttt 2-12
2.5.1 Memory Fetcheso it 2-14
2.5.2 Instruction Decoding and Execution 2-15
2.5.3 Interrupt and Error Handling 2-20
0 S) 2-21
CLOCK OPTIONS . ..ottt ettt e e 2-22
2.7.1 Crystal Oscillator it 2-22
2.7.2 RCOscillator, 2-23
INTERRUPTS
INTRODUCTIONottt it e e e 3-1
VIS INSTRUCTION AND VECTORTABLE 3-2
CONTEXT SWITCHINGottt 3-4
MASKABLE INTERRUPTS. i 3-5
NON-MASKABLE INTERRUPTS.t 3-7
3.5.1 Non-Maskable Interrupt Pending Flags 3-7
3.5.2 Software Trapovuiiiiiinininiennn. 3-8
3.5.3 NMI . e 3-9
3.5.4 Software Trap and NMI Interaction 3-9
INTERRUPT SUMMARYt 3-10
TIMERS
INTRODUCTION . ..ttt e ettt ee e 4-1
TIMER/COUNTERBLOCK.ttt 4-1
TIMER CONTROLBITSot e e 4-2
TIMER OPERATINGMODES 4-3
4.4.1 PWMModeoiiiiii i i e it 4-4
4.4.2 External Event Counter Mode 4-5

CONTENTS v

44.3 Input CaptureMode

4.5 ADDITIONAL GENERAL-PURPOSE TIMERS.
4.6 IDLETIMER.ttt e et
Chapter 5 MICROWIRE/PLUS
5.1 INTRODUCTION. . ..ottt it ittt ettt e e
5.2 THEORY OFOPERATIONttt
5.2.1 Timing i e e e
5.2.2 Port G Configuration
5.2.3 SK Clock Frequencyciuio....
5.2.4 Busy Flagand Interrupt
5.3 MASTER MODE OPERATION EXAMPLE
5.4 SLAVE MODE OPERATION EXAMPLE....................
Chapter 6 POWER SAVE MODES
6.1 INTRODUCTION. e e e e e e
6.2 ENTERINGTHEHALTMODEc0iiiiininnn..
6.2.1 Clock-Stopping Method
6.2.2 Port GMethod i,
6.3 EXITINGTHE HALTMODE,
6.3.1 HALTExitUsingReset
6.3.2 HALT Exit Using Multi-Input Wakeup
6.3.3 HALT Exit UsingG7Pin
6.4 IDLEMODE i ettt e e e e
6.5 HALT/IDLE AND WATCHDOG OPERATION
6.6 NMIEXITFROMHALT/IDLEt
Chapter 7 INPUT/OUTPUT
7.1 INTRODUCTION.t et et e e
7.2 0)24
7.3 PORT D ... e e e e
7.4 PORT G. .ot e
7.5 0)24 A
7.6 PORT L . e
7.7 ALTERNATE FUNCTIONSttt
7.7.1 Port G Alternate Functions
7.7.2 Multi-Input Wakeup/Interrupt
Chapter 8 WATCHDOG AND CLOCK MONITOR
8.1 INTRODUCTIONttt et
8.2 WATCHDOG OPERATION ot iie i
8.3 CLOCK MONITOROPERATIONiiiiiiiiinann.
8.4 CONFIGURATION.ttt ittt e e et e e e iie e
8.5 ERROR REPORTONWDOUT ..ot
Chapter 9 INSTRUCTION SET
9.1 INTRODUCTION.ttt ettt ettt e e eenenes
9.2 INSTRUCTION FEATURES.ttt i i ie i
9.3 ADDRESSINGMODESttt it it i i ceei e
9.3.1 Operand AddressingModes
9.3.2 Transfer-of-Control Addressing Modes
9.4 INSTRUCTION TYPESttt

vi

CONTENTS

9.5
9.6

DIFFERENCES BETWEEN COP800 AND COP888........... 9-9
DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS 9-10
9.6.1 ADC—AddwithCarry, 9-13
9.6.2 ADD —Add 9-14
9.6.3 AND —And ...t e 9-15
9.6.4 ANDSZ — And, SkipifZero 9-16
9.6.5 CLR — Clear Accumulator 9-17
9.6.6 DCOR — Decimal Correctoo.... 9-18
9.6.7 DEC — Decrement Accumulator 9-19
9.6.8 DRSZ REG# — Decrement Register and Skip if Result

is Zero 9-20
9.6.9 IFBIT —TestBit, 9-21
9.6.10 IFBNE # — If B Pointer Not Equal 9-22
9.6.11 IFC—TestifCarry 9-23
9.6.12 IFEQ—TestifEqual 9-24
9.6.13 IFGT — Testif Greater Than 9-25
9.6.14 IFNC—TestIfNoCarryc.ccovvvinn... 9-26
96.15 IFNE —TestIfNotEqual 9-27
9.6.16 INC — Increment Accumulator 9-28
9.6.17 INTR — Interrupt (Software Trap) 9-29
9.6.18 JID—dJumplIndirect............ 9-30
9.6.19 JMP —JumpAbsolutet 9-31
9.6.20 JMPL — Jump Absolute Long 9-32
9.6.21 JP—JumpRelative 9-33
9.6.22 JSR —dJump Subroutine 9-34
9.6.23 JSRL — Jump SubroutineLong 9-35
9.6.24 LAID — Load Accumulator Indirect 9-36
9.6.25 LD -—Load Accumulator 9-37
96.26 LD—LoadBPointerccc..... 9-39
9627 LD—LoadMemorycoiiiuiuiennnennn. 9-40
9.6.28 LD —LoadRegister 9-41
9.6.29 NOP—NoOperationccccvviinnnn. 9-42
9630 OR—O0T i e 9-43
9.6.31 POP—PopStacko, 9-44
9.6.32 PUSH —PushStackcciiiinon... 9-45
9.6.33 RBIT —Reset MemoryBit 9-46
96.3 RC—ResetCarryttt 9-47
9.6.35 RET — Return from Subroutine 9-48
9.6.36 RETI — Return from Interrupt 9-49
9.6.37 RETSK—ReturnandSkip 9-50
9.6.38 RLC — Rotate Accumulator Left Through Carry 9-51
96.39 RPND —ResetPending 9-52
9.6.40 RRC — Rotate Accumulator Right Through Carry 9-53
9.641 SBIT—SetMemoryBit 9-54
9.642 SC—SetCarryuuuvirinmieneennennnnnnn. 9-55
9.6.43 SUBC — SubtractwithCarry 9-56
9.6.44 SWAP — Swap Nibbles of Accumulator 9-58
9.6.45 VIS — Vector Interrupt Select 9-59
9.6.46 X — Exchange Memory with Accumulator 9-60
9.6.47 XOR—ExclusiveOrccviiiiinnenn... 9-62

CONTENTS vii

9.7 INSTRUCTION OPERATIONS SUMMARY
9.8 INSTRUCTION BYTESANDCYCLESooou...

Chapter 10 COPS88S8CL

10.1 INTRODUCTION

10.2 BLOCK DIAGRAM. et ettt e e
10.3 DEVICE PINOUTS/PACKAGES.t
104 PIN DESCRIPTIONS. e
10.5 INPUT/OUTPUT PORTS. i
10.6 PROGRAM MEMORY i
10.7 DATAMEMORY. e e
10.8 REGISTERBIT MAPS. i
10.9 MEMORY MAP. ...t e e e e e e e e e
10.10 RESET . .. e e e e e
10.11 INTERRUP T S. ... e et e e e ceaes
10.12 MASK OPTIONS ... e e e et e e e
10.13 EMULATIONDEVICESot i e e
Chapter 11 COPS888CG/EG/CS
11.1 INTRODUCTION e et e e e
11.2 BLOCK DIAGRAMS. i et it e e
11.3 DEVICE PINOUTS/PACKAGES. i,
114 PIN DESCRIPTIONS. it et e e
11.5 INPUT/OUTPUT PORTS. it e e e eeeaas
11.6 PROGRAM MEMORY e e
11.7 DATA MEMORY. ... i e ettt e e
11.8 REGISTER BIT MAPS. e i
11.9 MEMORY MAP. ... e e et e e e
11.10 RESET . .. e e e e e e e
11.11 INTERRUP T S. ... i i et et e e e
11.12 COMPARATOR. . ..ot e e e e e e e
11.13 L7 2 2
11.13.1 UART Operation Overview
11.13.2 UARTRegisterscciiiiiiiinnnnnn.
11.13.3 UARTInterfaceccuiiiineinnn...
11.13.4 AsynchronousMode,
11.13.5 SynchronousMode
11.13.6 FramingFormats.............
11.13.7 Reset Initialization
11.13.8 HALT/IDLE Mode Reinitialization
11.13.9 Baud Clock Generationc.cccvvu....
11.13.10 UART Interruptso,
11.13.11 UARTErrorFlags
11.13.12 DiagnosticTesting,
11.13.13 AttentionMode,
11.13.14 Break Generation and Detection

viii

11.14 MASK OPTIONS

11.15 EMULATIONDEVICESottt i i e
Chapter 12 COPS888CF

12.1 INTRODUCTION

CONTENTS

9-63
9-64

10-1
10-1
10-2
10-2
10-5
10-6
10-7
10-7
10-9
10-10
10-11
10-12
10-13

11-1

11-2

11-3

11-3

11-6

11-7

11-8

11-8
11-13
11-15
11-16
11-16
11-19
11-19
11-20
11-24
11-24
11-26
11-27
11-29
11-29
11-30
11-36
11-36
11-37
11-37
11-38
11-39
11-40

12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12

12.13
12.14

Chapter 13

13.1
13.2

13.3

13.4
13.5

13.6
13.7
13.8
13.9

13.10
13.11
13.12
13.13

BLOCK DIAGRAM. e 12-1
DEVICE PINOUTS/PACKAGES. 12-2
PIN DESCRIPTIONS. e 12-2
INPUT/OUTPUT PORTS. e 12-5
PROGRAM MEMORY e 12-6
DATAMEMORY.o 12-7
REGISTERBIT MAPS. e 12-7
MEMORY MAP. . .. e 12-9
RESET . .. e 12-11
INTERRUPTS. . ..o e 12-12
ANALOG-TO-DIGITAL CONVERTER. 12-13
12.12.1 A/DOperationc.oiuiiiiunennanenann. 12-13
12.12.2 A/D Converter Registers 12-14
12.12.3 Prescaler Selection 12-15
12.12.4 Single Conversion or Continuous Mode 12-16
12.12.5 Channel Selection 12-16
12.12.6 Multi-Channel Conversion 12-17
12.12.7 Speed, Accuracy, and Hardware Considerations 12-18
MASK OPTIONS e e 12-19
EMULATIONDEVICES e 12-20
APPLICATION HINTS

INTRODUCTIONt e e e e 13-1
MICROWIRE/PLUS INTERFACE, 13-1
13.2.1 MICROWIRE/PLUS Master/Slave Protocol 13-1
13.2.2 MICROWIRE/PLUS Continuous Mode 13-3
13.2.3 MICROWIRE/PLUS Fast Burst Output 13-4
13.2.4 NMC93C06-COP888CL Interface 13-5
TIMER APPLICATIONS e 13-9
13.3.1 Timer Capture Example 13-9
13.3.2 External Event Counter Example 13-11
TRIACCONTROL e e e 13-11
ANALOG-TO-DIGITAL CONVERSION USING ON-CHIP
COMPARATOR. e e e e 13-15
BATTERY-POWERED WEIGHT MEASUREMENT. 13-17
ZERO CROSSDETECTIONottt 13-17
INDUSTRIALTIMER e 13-19
PROGRAMMING EXAMPLESot 13-21
1391 Clear RAM i 13-21
13.9.2 Binary/BCD Arithmetic Operations 13-21
13.9.3 Binary Multiplication 13-24
13.9.4 BinaryDivision i L. 13-25
EXTERNAL POWER WAKEUP CIRCUIT. 13-27
WATCHDOG RESET CIRCUITo 13-30
INPUT PROTECTION ON COP888PINS 13-30
ELECTROMAGNETIC INTERFERENCE (EMI)

CONSIDERATIONS. . ..o e e e 13-33
13.13.1 Introduction 13-33
13.13.2 Emission Predictions 13-33
13.13.3 BoardLayout 13-35

CONTENTS ix

13.13.4
13.13.5
13.13.6
13.13.7
13.13.8

Decoupling
Output Series Resistance
Oscillator Control
Mechanical Shielding

Conclusion i

Appendix A DEVELOPMENT SUPPORT

Al INTRODUCTION e
A2 DEVELOPMENTHARDWARE.

A21
A22
A23

COP8 Model 400 In-Circuit Emulator
COP8 DebugModule
Ordering Information

A3 DEVELOPMENT SOFTWARE

A3.1
A3.2
A33

COPS8 Assembler/Linker/Librarian Package
COP8 C-Compilercuiiiiiinnnn...
NeuFuzd i i

AppendixB FORM, FIT & FUNCTION EMULATORS

B.1 EMULATORDEVICES i
B.2 EMULATOR PROGRAMMING.t

Appendix C ELECTRICAL CHARACTERIZATION DATA
Appendix D TECHNICAL SUPPORT

D.1 DIRECT TECHNICAL SUPPORT. i
D.2 24-HOUR TECHNICAL SUPPORT
Index

b CONTENTS

13-35
13-36
13-37
13-37
13-37

LIST OF FIGURES

Figure 2-1 COP888BlockDiagramc.coiuiriiiininan.... 2-2
Figure 2-2 A BasicMemoryMap................co .. 2-4
Figure 2-3 Memory Map with Data Segment Extension 2-6
Figure 2-4 Control Logic and ALU Interface. 2-13
Figure 2-5 Crystal Oscillator Circuit. 2-22
Figure 2-6 RC Oscillator Circuit 2-23
Figure 3-1 COPB888 Interrupt Block Diagram.......................... 3-2
Figure 4-1 TimerinPWMModet 4-4
Figure 4-2 Timer in External Event Counter Mode 4-6
Figure 4-3 Timer in Input Capture Mode 4-8
Figure 4-4 IDLE Timer (Timer T0) Block Diagram 4-11
Figure 5-1 MICROWIRE/PLUS Example............................. 5-1
Figure 5-2 MICROWIRE/PLUS Circuit Block Diagram.................. 5-2
Figure 5-3 MICROWIRE/PLUS Interface Timing, Standard SK Mode. 5-3
Figure 5-4 MICROWIRE/PLUS Interface Timing, Alternate SK Mode 5-3
Figure 7-1 COP888 Port Structureco i, 7-1
Figure 7-2 Multi-Input Wakeup/Interrupt Logic 7-5
Figure 8-1 Watchdog Logic Block Diagram............................ 8-2
Figure 8-2 Watchdog Service Register (WDSVR) Format 8-4
Figure 10-1 COP888CL Block Diagram. 10-2
Figure 10-2 Device Package Pinouts 10-3
Figure 11-1 COP888CG Block Diagram 11-2
Figure 11-2 COP888CS Block Diagram.o uvuin.n. 11-3
Figure 11-3 Device Package Pinouts 11-4
Figure 11-4 UART Block Diagram.............. ..., 11-20
Figure 11-5 UART Transmitter Timing, Asynchronous Mode.............. 11-25
Figure 11-6 UART Receiver Bit Sampling, Asynchronous Mode. 11-25
Figure 11-7 UART Receiver Timing, Asynchronous Mode................. 11-26
Figure 11-8 UART SynchroncusMode Timing. 11-28
Figure 11-9 UART Framing Formats 11-28
Figure 11-10UART Baud Clock Generation Block Diagram................ 11-31
Figure 11-11 UART Baud Clock Divisor Registers. 11-32
Figure 11-12UART Diagnostic Mode Loopback Connection 11-38
Figure 12-1 COP888CF Block Diagram. 12-2
Figure 12-2 Device Package Pinouts 12-3
Figure 12-3 COP888CF A/D Converter Block Diagram 12-13
Figure 12-4 A/D Conversion Routine............., 12-17
Figure 12-5 Analog Input Pin Internal Operation 12-19
Figure 13-1 MICROWIRE/PLUS Sample Protocol Timing 13-2
Figure 13-2 MICROWIRE/PLUS Fast Burt Timing. 13-5
Figure 13-3 NMC93C06-COP888CL Interface 13-5
Figure 13-4 Timer Capture Application 13-9
Figure 13-5 A/D Conversion Using On-board Comparator and Timer T1. 13-15
Figure 13-6 Battery-powered Weight Measurement 13-18
Figure 13-7 Industrial Timer Application.............................. 13-20
Figure 13-8 Power Wakeup Using An NPN Transistor 13-28

CONTENTS xi

Figure 13-9 Power Wakeup Using Diodes And Resistors..................
Figure 13-10Watchdog Reset Circuit
Figure 13-11Ports L/C/G Input Protection (Except G6).

Figure 13-12Port I Input Protection

Figure 13-13Diode Equivalent of Input Protection
Figure 13-14 External Protection of Inputs.

xii

CONTENTS

13-29
13-30
13-31
13-31
13-32
13-33

LIST OF TABLES

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 3-1
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 11-1
Table 11-2
Table 11-3
Table 11-4

ahila 11
l aoie 11- 'J

Table 11-6

Table 11-7

Table 11-8

Table 11-9

Table 11-10
Table 11-11
Table 11-12
Table 11-13
Table 11-14
Table 11-15
Table 11-16
Table 11-17
Table 11-18
Table 11-19
Table 11-20
Table 11-21
Table 11-22

Features List............
DataMemoryMap,
I/O Port Configurationcovuu..
PSWRegisterBits
CNTRL RegisterBits
ICNTRL Register Bits
Interrupt Vector Table
Timer Control Bits,
Timer Mode Control Bits
Port G Configuration Register Bits
Master Mode Clock SelectBits
Instructions UsingAandC....................
Transfer of Control Instructions
Memory Transfer Instructions.
Arithmetic and Logic Instructions...............
Opeodes ovii i e
COP888CL Pinouts.ovviiiiiinieaenn.

T2CNTRL, Timer T2 Control Register (Address xxC6)

WDSVR, Watchdog Service Register (Address xxC7)
ICNTRL, Interrupt Control Register (Address xxE8)
CNTRL, Control Register (Address xxEE)

PSW, Processor Status Word Register (Address xxEF)

COP888CL Data Memory Map
COP888CL Interrupt Rank and Vector Addresses. .
COP888CG/EG/CS Pinouts

T3CNTRL, Timer T3 Control Register (Address xxB6)*
CMPSL, Comparator Select Register (Address xxB7)
ENU, UART Control and Status Register (Address xxBA)

ﬁ‘\TTTD TTADT D

nnnnnnn oiqta

BAUD, UART Baud Register (Address xxBD)

PSR, UART Prescaler Select Register (Address xxBE)
T2CNTRL, Timer T2 Control Register (Address xxC6)

WDSVR, Watchdog Service Register (Address xxC7)
ICNTRL, Interrupt Control Register (Address xxE8)
CNTRL, Control Register (Address xxEE)

Na
LINUIL, UAIVL Receive Control and Status R negisier (Address XXBB)

ENUI, UART Interrupt and Clock Source Register (Address xxBC)

PSW, Processor Status Word Register (Address xxEF)

COP888CG/EG/CS Data MemoryMap

COPS888CG/EG/CS Interrupt Rank and Vector Addresses

Port I Alternate Funetions.

CMPSL, Comparator Select Register (Address xxB7)
ENU, UART Control and Status Register (Address xxBA)
ENUR, UART Receive Control and Status Register (Address xxBB)
ENUI, UART Interrupt and Clock Source Register (Address xxBC)

BAUD, UART Baud Register (Address xxBD)

PSR, UART Prescaler Select Register (Address xxBE)

5-5
9-64
9-64
9-65
9-65
9-66
10-4
10-7
10-7
10-8
10-8
10-8
10-9

10-12
11-5
11-8
11-9
11-9

11.10

PRV

11-10
11-10
11-11
11-11
11-11
11-12
11-12
11-12
11-13
11-17
11-18
11-18
11-21
11-22
11-22
11-23
11-23

CONTENTS xiii

Table 11-23
Table 11-24

Table 11-25 UART Prescaler Factors.

Table 11-26

Table 12-1 COPS888CF Pinouts.

Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table 12-8
Table 12-9
Table 12-10

Table 12-11 A/D Prescaler Options . .
Table 12-12 A/D Channel Selection . .

Table 13-1
Table A-1
Table A-2
Table A-3

Table B-1 Programmer Information

xiv

CONTENTS

UART Clock Sources (AsynchronousMode)
UART Clock Sources (SynchronousMode)

UART Baud Rate Divisors, 1.8432 MHz Prescaler Output

T2CNTRL, Timer T2 Control Register (Address xxC6)
WDSVR, Watchdog Service Register (Address xxC7)...........
ENAD, A/D Converter Control Register (Address xxCB)........
ICNTRL, Interrupt Control Register (Address xxE8)
CNTRL, Control Register (AddressxxEE)
PSW, Processor Status Word Register (Address xxEF)
COP888CF DataMemory Mapcouiiinvennnn..
COPS888CF Interrupt Rank and Vector Addresses.............
ENAD, A/D Converter Control Register (Address xxCB)........

Electric Field Calculation Results..........................
Assembler/Linker/Librarian ordering information
COP8C Compiler Ordering Information
NeuFuz4 Ordering Information............................

11-30
11-30
11-33
11-34
12-4
12-7
12-7
12-8
12-8
12-8
12-9
12-9
12-12
12-15
12-16
12-17
13-34
A-3
A-4
A4
B-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The COP888 Feature Family 8-bit microcontrollers provide high-performance, low-cost
solutions for embedded control applications. COP888 devices are fabricated with
National Semiconductor’s M2CMOS™ technology for low current drain and a wide
operating voltage range. Most instructions are single-byte and have an execution time of
one instruction cycle, allowing high throughput. Multiple addressing modes and a rich
instruction set further enhance throughput efficiency and reduce program size. Other
COP888 features such as reconfigurable inputs and outputs, multi-mode general-
purpose timers, and the MICROWIRE/PLUS™ serial interface provide the flexibility
needed to construct single-chip solutions for a wide variety of applications.

All COP888 Feature Family members share the set of features listed in Section 1.2.
Many individual family members also contain other features such as additional timers,
an A-to-D converter, or a UART. The device-specific features are described in Section 1.3.

1.2 BASIC FEATURES

Each member of the COP888 family of microcontrollers offers the following features:
* 8-bit core processor.
* CMOS technology for low power, fully static operation.
* HALT mode for very low standby power.

* Memory mapped architecture. All RAM, I/O ports, and registers (except A and PC)
are mapped into the data memory address space.

* On-chip data memory and program memory.
» Flexible, reconfigurable I/O.

* MICROWIRE/PLUS serial interface, a 3-wire serial data communication system
that allows the microcontroller to be programmed for either master or slave mode
operation.

« Extremely versatile 16-bit timer with two associated autoload/capture registers,
which can operate in any of three modes: PWM (Pulse Width Modulation), exter-
nal event counter, or input capture register.

* Non-maskable Software Trap interrupt.
* Maskable interrupts (number and type depending on family member).

* Two 8-bit “Register Indirect” data memory pointers.

OVERVIEW 1-1

» 8-bit Stack Pointer (SP) for stack in data memory RAM.
» Choice of clock types: crystal oscillator, or R/C oscillator.

1.3 DEVICE-SPECIFIC FEATURES

In addition to the core features, non-core features are provided by specific COP888
devices. These features are:

* 8-bit Data Segment Address Register (S Register), used for addressing data mem-
ory beyond the first 128 bytes of RAM

* One or more additional 16-bit general-purpose timers

* IDLE mode for very low standby power while maintaining real time with associ-
ated IDLE Timer

¢ Multi-Input Wakeup/Interrupt feature, which provides additional inputs for inter-
rupts or to exit the HALT or IDLE mode

* Watchdog and clock monitor
* NMI non-maskable interrupt

» Full-duplex, double-buffered UART (Universal Asynchronous Receiver/Transmit-
ter) for serial communication

* Analog-to-Digital (A/D) Converter with eight single-ended or four differential-pair
channels

Table 1-1 lists the available COP888 device types and shows the features present in each
device. The device types are listed across the top, and the features are listed along the
left side. Inside the table, the word “YES” or a numerical quantity indicates the presence
of that feature; a dash indicates the absence of a feature. Memory sizes are expressed in

bytes.

1-2 OVERVIEW

Table 1-1 Features List

Feature COPS8S8SCL | COP88S8CG | COP88SCF | COPS8SSEG | COPS888CS
Program Memory (ROM) 4K 4K 4K 8K 4K
Data Memory (RAM) 128 192 128 256 192
S-Register — YES — YES YES
16-Bit Programmable 2 3 2 3 1
Timers
IDLE Mode and Timer YES YES YES YES YES
MIWU Register YES YES YES YES YES
Watchdog and Clock YES YES YES YES YES
Monitor
UART — YES — YES YES
Comparator — 2 — 2 1
A/D Converter — — YES — —

OVERVIEW

1-3

Chapter 2

ARCHITECTURE

2.1 INTRODUCTION

The COP888 microcontroller contains all program memory and data memory internally.
In addition, it contains on-chip configurable I/Os, an on-chip timer, and a built-in
MICROWIRE/PLUS interface. The presence of on-chip memory and peripherals allows
the COP888 microcontroller to provide a single-chip solution for many applications.

The COP888 memory organization is based on the “Harvard” architecture, in which the
program memory is distinct from the data memory. Each of these two types of memory
has its own physical memory space, and uses its own internal address bus. The
advantage of this type of organization is that accesses to program memory and data
memory can take place concurrently, reducing overall execution time. By contrast, in the
“Von Neumann” architecture, program memory and data memory share the same
address bus, and concurrent accesses cannot occur.

Except for the Accumulator (A) and Program Counter (PC), all registers, I/O ports, and
RAM are memory mapped in the data memory address space. Among these registers are
the B Register, X Register, Stack Pointer (SP), and I/O port registers. All such registers
can be accessed by reading or writing their memory addresses.

The COP888 architecture provides one enhancement to the Harvard architecture: an
instruction called Load Accumulator Indirect (LAID), which allows access to data tables
stored in program memory. A conventional Harvard architecture does not allow this.

The COP888 device communicates with other devices through several configurable I/O
ports or through the MICROWIRE/PLUS serial I/O interface. The I/O ports are
designated by letter names, such as Port C, Port D, Port G, Port I, and Port L.

A 16-bit general-purpose timer is provided in all COP888 microcontrollers, together with
two associated 16-bit autoload/capture registers. The timer can be configured to operate
in any of three modes: Pulse Width Modulation (PWM), external event counter, or input
capture mode.

A maximum of sixteen different interrupts are available in the COP888: two non-
maskable interrupts and 14 maskable interrupts. All interrupts cause a branch to the
same location in program memory. A special instruction (VIS) may be placed at this
location to force an automatic branch to the highest priority-interrupt service routine.

2.2 BLOCK DIAGRAM

A block diagram of the COP888 Family architecture is shown in Figure 2-1. All COP888
Family devices contain the elements pictured in the block diagram. These elements
include: the Arithmetic Logic Unit (ALU), Data Memory, Program Memory, Timer 1,
MICROWIRE/PLUS, Port I/Os, and Interrupt Logic. Functional blocks not common to all

ARCHITECTURE 2-1

CKI RESET Vgc GND

bl

PROGRAM — DATA)
] MEMORY MEMORY CLOCK
16-BIT
r TIMER/COUNTER INTERRUPT
WITH (TIMER &
— AUTOLOAD/ [®] EXTERNAL)
MEMORY HALT CAPTURE
%%%%F}gg ADDRESS REGISTER
REGISTER

3 4 h

CPU
REGISTERS TIO
 Ris |
1.8 ALU S0

«2°| MICROWIRE/PLUS
1 X SK

I
2
I
]

PORT G PORT I/Os

I
Q
-4
-
P
l‘

1

INSTRUCTION
DECODER

cop8_blk
Figure 2-1 COP888 Block Diagram

COP888 Family members are not shown in Figure 2-1. Block diagrams of individual
devices are shown in the device-specific chapters of this manual.

2.3 MEMORY ORGANIZATION

The COP888 microcontrollers are based on a modified Harvard-style architecture. This
type of architecture separates the control program memory from the data memory. Each
memory type has its own address space, address bus and data bus. The following sections
describe the memory structure.

2-2 ARCHITECTURE

2.3.1 Program Memory

The COP888 program memory is a block of byte-wide non-volatile ROM or EPROM
memory. The program memory addressing range is 32 Kbytes. A 15-bit Program Counter
(PC) is used to address the program memory, which is subdivided into 4-Kbyte segments
with respect to certain instructions. The program memory may hold program
instructions or constant data.

The 4-Kbyte segment divisions within the program memory affect the economical 2-byte
Jump Absolute (JMP) and Jump Subroutine (JSR) instructions. These instructions cause
the lower 12-bits of the PC to be replaced by the value specified in the instruction while
the upper three bits remain unchanged. Thus, these instructions branch only within the
currently addressed 4-Kbyte program memory segment.

The indirect instructions, Jump Indirect (JID) and Load Accumulator Indirect (LAID),
operate only within a program memory block of 256 bytes. This restriction exists because
only the lower eight bits of the PC (PCL) are replaced during program memory table
lookups. The upper seven bits of the PC (PCU) remain unchanged. Replacing only the
PCL minimizes the execution time of this instruction. Programmers must ensure that
LAID/JID instructions and their associated tables do not cross the 256-byte program
memory boundaries.

The very economical Jump Relative Short (JP) instruction is completely independent of
all program memory block and memory segment boundaries. This single-byte JP
instruction allows a branch forward of up to 32 locations or backwards of up to 31
locations relative to the current contents of the program counter. A branch forward of 1
is not allowed, since this may be implemented with a NOP.

2.3.2 Data Memory

All COP888 family members have read/write data memory. Some sections of the data
memory space are reserved for the CPU registers, I/O registers, and control registers, all
of which are memory mapped. Other sections of the data memory contain RAM and/or
EEPROM, which can be used by the application program. The amount of available RAM
or EEPROM memory varies from one family member to another. For information on the
quantity and type of data memory, see the device-specific chapters later in this manual.

Data memory can be accessed either directly by an address specified in the instruction,
or indirectly using the X, SP, or B pointer registers. In all cases, the data memory location
is specified as a single byte. Thus, one of 256 memory locations is specified for a data
memory access. In the most basic COP888 devices, only the first 256 bytes of data
memory are used. In other COP888 devices, a data segment extension register (S
register) extends the data memory address range to 32 Kbytes. Data memory extension
using the S register is explained in the next section of this manual, Data Segment
Extension.

In basic devices that do not use data segment extension, there is a single 256-byte
segment of data memory, divided into smaller segments as shown in Figure 2-2. There
are 128 bytes of RAM, occupying two non-contiguous address spaces: 112 bytes of lower
memory, from 00 to 6F Hex, and 16 bytes at the top of the memory, from FO to FF Hex.
Most of the remaining upper part of this memory, from B0 through EF Hex, is used for

ARCHITECTURE 2-3

the I/O and control registers required by the timers, ports, MICROWIRE interface, CPU
core, and optional COP888 peripherals (UART, comparator, etc.). The remaining parts of
the 256-byte memory segment (70-7F Hex) are not used.

FF | RAM-RESIDENT REGS.
ro| (NCLUDING X, SP, B)
1/0 AND CONTROL
REGISTERS
80
7F
UNUSED
70
6F
GENERAL-PURPOSE
RAM (112 BYTES)
00

888_mmap_basic

Figure 2-2 A Basic Memory Map

The lower, 112-byte segment of RAM is general-purpose read/write memory that is
available to the application program. Upon reset, the stack pointer is initialized to the
top of this segment (6F Hex), and the stack grows downward from that address as items
are pushed onto the stack. Memory from 00 Hex up to the stack can be used for any
purpose by the application program. The first 16 addresses (00-OF Hex) have special
significance when used with certain instructions (such as LD B,#), because then the
instructions are single byte and take only one instruction cycle to execute, rather than
two bytes and two instruction cycles.

The upper, 16-byte segment of RAM at the top of memory is used for the RAM-resident
registers. The X, SP, and B pointer registers are mapped into memory locations FC, FD,
and FE Hex, respectively. The S register, if used, is mapped into address FF Hex. The
remaining 12 register locations are available to the application program for any purpose.
Certain COP888 instructions (such as DRSZ) work only with this 16-byte segment of
memory. Certain other instructions (such as LD MD,#) are more efficient when used with
this 16-byte segment than with other RAM memory locations.

2-4 ARCHITECTURE

There is at least one segment of unused data: 16 bytes from 70 to 7F Hex. Reading from
this unused segment returns FF Hex. Reading from other unused segments returns
unknown data.

All RAM, I/O ports, and registers (except A and PC) are mapped into the data memory
address space. Table 2-1 shows a basic Register Memory Map for all COP888 devices.
Refer to the device-specific chapters for complete memory maps of individual devices.

Table 2-1 Data Memory Map

Address Contents
00-6F On-chip RAM Address Space
70-BF On-chip Data Memory Address Space
CO0-CF I/O and Register Address Space

DO Port L Data Register

D1 Port L Configuration Register
D2 Port L Input Pins (read only)
D3 Reserved for Port L

D4 Port G Data Register

D5 Port G Configuration Register
D6 Port G Input Pins (read only)
D7 Port I Input Pins (read only)
D8 Port C Data Register

D9 Port C Configuration Register
DA Port C Input Pins (read only)
DB Reserved for Port C

DC Port D Data Register

DD-DF Reserved for Port D
EO0-E5 Reserved

E6 Timer T1 Autoload Register TILRB Lower Byte
E7 Timer T1 Autoload Reigster TIRB Upper Byte
E8 1CNTRL Register
E9 MICROWIRE/PLUS Shift Register
EA Timer T1 Lower Byte
EB Timer T1 Upper Byte :
EC Timer T1 Autoload Register TIRA Lower Byte
ED Timer T1 Autoload Register T1RA Upper Byte
EE CNTRL Control Register
EF PSW Register
FO-FB On-chip RAM mapped as Registers
FC X Register
FD SP Register
FE B Register
FF S Register

ARCHITECTURE 2-5

Data Segment Extension

In the most basic COP888 devices, there are 128 bytes of RAM residing in two segments
within the 256-byte data memory, as described in the previous section. In COP888
devices having more than 128 bytes of RAM, some of the RAM occupies memory above
the first 256 addresses (above address FF Hex).

To allow the program to access the RAM residing above this address, the data segment
extension register, or “S register,” is used. A 16-bit address is made by combining the 8-
bit S register with the normal 8-bit memory address specified by the program instruction.
The S register is the high-order byte, and the normal 8-bit memory address is the low-
order byte. The S register can be accessed via address FF Hex, and can be read or written
like any other register.

The data segment extension feature only works for the lower 128 bytes of each 256-byte
memory segment. Therefore, only the lower 128 bytes are used for general-purpose RAM
in each 256-byte memory page. The upper 128 bytes are occupied by the same set of
registers in all 256-byte memory pages. This concept is more easily understood by looking
at the memory map for devices with data segment extension, shown in Figure 2-3.

Upon reset, the S register is cleared to zero, and the memory map is the same as for a
device without the data segment extension feature. However, if the value 01 is written to

O00FF['RAM-RESIDENT REGS. O1FF XXFF
00F0 (X, SP, B, §) 01F0 XXFO
ADDRESSES MAP ADDRESSES MAP
TO LOCATIONS TO LOCATIONS
1/0 AND CONTROL 0080-00FF 0080-00FF
REGISTERS
0080 0180 XX80
007F 017F XX7F
UNUSED
RAM SEGMENT 01 RAM SEGMENT XX
RAM SEGMENT 00 (UP TO 128 BYTES) (UP TO 128 BYTES)
(112 BYTES)
0000 0100 XX00
S REGISTER = 00 S REGISTER = 01 S REGISTER = XX

888_mmap_data_seg

Figure 2-3 Memory Map with Data Segment Extension

2-6 ARCHITECTURE

the S register, a data memory access instruction specifying an address between 00 and
7F Hex will access the RAM residing at 0100-017F Hex, also called RAM Segment 01.
Similarly, if the value 02 is written to the S register, a data memory access between 00
and 7F Hex will access RAM at 0200-027F Hex (RAM Segment 02), and so on. An access
to the upper half of any 256-byte memory segment (from 80 to FF Hex), regardless of the
S register contents, will always access the same set of registers as a device that does not
use data segment extension.

Additional memory beyond the minimum of 128 bytes, if available, resides in the
additional RAM segments, starting with Segment 01. For example, the COP888CG has
192 bytes of RAM, or 50% more than the minimum of 128 bytes. The additional 64 bytes
of RAM reside in the address range of 0100-013F Hex, or the bottom half of RAM
Segment 01. The COP888EG, which has 256 bytes of RAM, has an additional 128 bytes
residing in the address range of 0100-017F Hex, thus filling all of RAM Segment 01. A
COP888 device having more than 256 bytes of RAM begins to fill Segment 02, an so on,
up to the theoretical limit of 32K bytes in 256 segments. Note that each additional 128
bytes of memory fill a contiguous 128-byte segment, unlike the first 128 bytes of RAM in
Segment 00.

The software can write to the S register (address xxFF Hex) at any time to change from
one memory address segment to another. All addressing modes are available, no matter
which segment is chosen. Note that the S register does not need to be changed in order
to access registers residing between 80 and FF Hex, because the S register is ignored in
that range. Also, note that the Stack Pointer (SP) always points to memory in Segment
00 (starting with address 6F upon reset), regardless of what is contained in the S register.
Therefore, the stack must always be stored in Segment 00.

2.3.3 Memory-Mapped I/O Registers

The COP888 devices have three different types of ports: reconfigurable input/output,
dedicated output, and dedicated input. Every I/O port has specific memory mapped I/O
registers and/or addresses associated with it, depending on the port type. The following
sections describe the I/0 port register structure for each port type.
NOTE: All port registers and pins are memory mapped in the data memory address
space. Therefore, instructions which operate on data memory also operate
on port registers and pins. This includes instructions used to set, reset and
test individual bits. The I/O register addresses for specific ports are listed
in the memory map shown in Table 2-1.

Reconfigurable Input/Outputs

Reconfigurable input/output ports have two associated port registers: a port
configuration register and a port data register. These two memory mapped registers
allow the port pins to be individually configured as either inputs or outputs, and to be
individually changed back and forth in software.

The configuration register is used to configure the pins as inputs or outputs. A pin may
be configured as an input by writing a 0 or as an output by writing a 1 to its associated
configuration register bit. If a pin is configured as an output, the associated data register
bit represents the state of the pin (1 = logic high, 0 = logic low). If the pin is configured as

ARCHITECTURE 2-7

an input, the associated data register bit selects whether the pin is a weak pull-up or Hi-
Z input. Table 2-2 shows the port configuration options. The port configuration and data
registers are all read/write registers.

A third data memory address is assigned to each I/O port. Reading this memory address
returns the value of the port pins regardless of how the pins are configured.

Table 2-2 1/0 Port Configuration

Configuration Bit | Data Bit Port Pin Setup
0 0 Hi-Z input (TRI-STATE output)
0 1 Input with pull-up (weak one output)
1 0 Push-pull zero output
1 1 Push-pull one output

Dedicated Outputs

Dedicated output ports have one associated port register. This memory mapped output
data register is used to set the port pins to a logic high or low. A port pin may be
individually configured logic high or low by writing a one or zero, respectively, to its
associated data register bit. Port data registers may be read or written.

Dedicated Inputs

Dedicated input ports have no associated port registers. However, a data memory
address is assigned to the port pins for reading of the port input. Port pin addresses are
read-only memory locations.

2.4 CORE REGISTERS

All COP888 microcontrollers share a common block of logic referred to as the COP888
Core. This core includes the COP888 Central Processing Unit (CPU), the Timer 1 Block,
the MICROWIRE/PLUS block, and the Interrupt Block. The registers contained within
these blocks are the core registers. The registers include: a 15-bit program counter (PC),
an 8-bit accumulator (A), a processor status word (PSW), two core control registers
(CNTRL, ICNTRL), sixteen 8-bit data memory registers, one 16-bit timer, two 16-bit
autoload capture registers, and one 8-bit shift register. All core registers are memory
mapped into the data memory address space except for the program counter (PC) and
accumulator. The following sections describe in detail the COP888 core registers.

2.4.1 Accumulator

All COP888 family parts have a single 8-bit accumulator. The accumulator is used in all
arithmetic and logical operations, such as ADD and XOR. In addition, it is used with the
exchange, JID and LAID instructions. The arithmetic and logical instructions use the

2-8 ARCHITECTURE

accumulator as both an operand and result register. A second operand register, if
required, is either the instruction register (IR), which contains immediate data or a
register in data memory.

2.4.2 Program Counter

The CPU contains a 15-bit program counter used in addressing the byte-wide program
memory. The PC is initialized to zero at reset and is incremented once for each byte of an
instruction opcode. Jumps, jump subroutines, interrupts, and the JID instruction cause
some or all of the PC bits to be replaced. Transfer-of-control instructions that replace only
some of the PC bits have a limited jumping range.

2.4.3 Control Registers

The COP888 core contains three 8-bit control registers (PSW, CNTRL and ICNTRL). The
following paragraphs and tables show the bits contained in each register. The functions
of these bits are described in later chapters.

PSW Register (Address xxEF Hex)

The Processor Status Word (PSW) register contains eight different flag bits. The PSW
register bits are assigned as follows:

GIE Global Interrupt Enable
EXEN External Interrupt Enable
BUSY MICROWIRE busy shifting flag
EXPND External Interrupt Pending
T1ENA Timer T1A Interrupt Enable
T1PNDA Timer T1A Interrupt Pending
C Carry Flag
HC Half-Carry Flag
Table 2-3 PSW Register Bits
Bit7 | Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HC C T1PNDA T1ENA EXPND BUSY EXEN GIE

CNTRL Register (Address xxEE Hex)

The control register (CNTRL) contains the MICROWIRE/PLUS, External interrupt, and
Timer 1 control flags. The CNTRL register bits are assigned as follows:

SL1 & SLO Select the MICROWIRE clock divide-by (00=2,01=4,1x=8)

IEDG External interrupt edge polarity (0 = rising edge, 1 = falling edge)
MSEL Selects G5 and G4 as MICROWIRE signals SK and SO, respectively
T1CO Timer T1 Start/Stop Control in Timer Modes 1 and 2

T1C1 Timer T1 Mode Control Bit

ARCHITECTURE 2-9

T1C2 Timer T1 Mode Control Bit
T1C3 Timer T1 Mode Control Bit

Table 2-4 CNTRL Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T1C3 T1C2 T1C1 T1CO MSEL IEDG SL1 SLO

ICNTRL Register (Address xxE8 Hex)

The interrupt control register (ICNTRL) contains the MICROWIRE/PLUS Interrupt
enable and pending flags, the Timer 1 Source B Interrupt enable and pending flags, the
general purpose Peripheral Interrupt enable and pending flags, and two spare bits. In
most COP888 family members, the Peripheral Interrupt enable and pending flags are
used for the Idle Timer interrupt enable and pending flags, TOEN and TOPND,
respectively. If a family member does not have an Idle Timer, these flags are used for
other purposes. In COP888 devices that support the Multi-Input Wakeup feature on Port
L, one of the spare flags (FLAG2) is used for the Port L Interrupt Enable flag. Many
COP888 devices do not use the second spare flag (FLAG1). In these devices, FLAGL1 is
reserved for future use and should not be set by the user program. Refer to the device
specific chapters for information on the assignment of the ICNTRL bits for individual
COP888 devices. The ICNTRL register bits are assigned as follows:

T1ENB Timer T1B Interrupt Enable

T1PNDB Timer T1B Interrupt Pending

uWEN MICROWIRE/PLUS Interrupt Enable

uWPND MICROWIRE/PLUS Interrupt Pending

PEN General Purpose Peripheral Interrupt Enable (frequently used for
TOEN; Idle Timer interrupt enable)

PPND General Purpose Peripheral Interrupt Pending (frequently used for
TOPND; Idle Timer interrupt pending)

FLAG2 General Purpose Flag (frequently used for LPEN; Enable Port L inter-
rupts)

FLAG1 General Purpose Flag (reserved)

Table 2-5 ICNTRL Register Bits

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FLAG1 | FLAG2 PPND PPEN | uWPND | uWEN | TIPNDB | TIENB
(LPEN) | (TOPND) | (TOEN)

2.4.4 Data Registers

The COP888 contains sixteen 8-bit data registers, located in data memory from address
00F0 to O0FF Hex. Four of these registers, 00FC through 00FF Hex, have special
functions. Locations 00FC and 00FE Hex contain the 8-bit data memory pointers X and
B respectively. Location 00FD contains the 8-bit stack pointer (SP) for data memory.
Location O0FF is reserved for the data segment extension register. This register is used

2-10 ARCHITECTURE

in some COP888 devices to extend data memory beyond 128 bytes. In devices which
contain 128 or fewer bytes of data memory, this register is reserved. The remaining
twelve registers, 00F0 through 00FB, are always available for general-purpose use.

Certain COP888 instructions differentiate data registers from other data memory
locations, such as the DRSZ (decrement register skip if zero) instruction, DRSZ subtracts
one from a specified data register and skips the following instruction if the result of the
decrement is zero. This instruction is extremely useful in constructing code loops, and
makes the data registers ideal choices for loop counters. Other instructions like the “load
memory with immediate data” are more efficient when used with the register memory
than when used with the general data memory.

Stack Pointer

The stack pointer (SP) is memory mapped at data memory location 00FD Hex. The stack
pointer is automatically initialized during Reset to point to location 06F Hex.

Pushing addresses onto the stack causes the stack to grow downward in data memory
toward address zero. Popping addresses off the stack causes the stack to shrink upward.
If the stack pointer is initialized to the top of the base segment of memory (06F Hex),
over-popping the stack causes a Software Trap error interrupt. The lower limit of the
stack is address 0000 Hex. Over-pushing the stack causes the stack to wrap around to
addresses 00FF and O0FE Hex (subroutine calls and interrupts cause a double-byte
push). This should be avoided because it interferes with the B pointer, which is memory
mapped at location 00FE Hex.

The user program may initialize the stack pointer anywhere in the base segment of
memory. The stack still grows down toward address zero, but the stack no longer has the
Software Trap interrupt over-pop protection. Initializing the stack pointer to one of the
upper base segment data register addresses (00F0 to 00FB Hex) is potentially very
hazardous. The available stack memory is severely limited, and if the stack pushes
downward beyond address location 00F0, interference occurs with the PSW and CNTRL
control registers, which are memory mapped at address locations 00EF and 00EE Hex,
respectively.

Data Memory Pointers (Index Registers)

The COP888 contains two special registers, X and B, which may be used as pointers.
These registers allow indirect addressing of all locations mapped in the data memory
address space. In addition, these registers may be automatically incremented or
decremented by certain instructions that use register indirect addressing. The auto-
incrementing and auto-decrementing features allow the user program to easily step
through data memory locations (i.e., tables).

Data Segment Extension Register

In COP888 family members that have more than 128 bytes of RAM, the data memory
register located at FF Hex is used as the Data Segment Extension Register (S). Refer to
Section 2.3.2 for more information on this register.

ARCHITECTURE 2-11

2.4.5 MICROWIRE/PLUS Register

The MICROWIRE/PLUS three-wire serial communication system contains an 8-bit
memory-mapped serial shift register (SIOR). The serial data input and output signals to
the SIOR register are supplied by SI and SO, respectively. The shift register is clocked by
the signal SK. Data is shifted through the SIOR from the low-order end to the high-order
end on the falling edge of the SK clock signal.

2.4.6 Timer Registers

The COP888 core contains one timer block. The timer block consists of a 16-bit timer/
counter with two associated 16-bit autoload/capture registers. The 16-bit registers and
timer are each organized as two 8-bit memory mapped registers. The upper and lower
byte addresses for the memory mapped timer and autoload/capture registers are shown
in the data memory address map (Table 2-1).

2.5 CPU OPERATION

This section describes the operation of the Central Processing Unit (CPU). A brief
description of the control logic and Arithmetic Logic Unit is given at the beginning of this
section. The remainder of this section describes how the microcontroller performs
memory fetches, executes instructions, and handles interrupt/error conditions. A block
diagram of the main elements that interface with the control logic and ALU is shown in
Figure 2-4.

Control Logic

The control logic handles virtually all operations within the device. It includes the
program counter, the memory address register, the processor status word register, and
the instruction register for storing information. It also includes logic for directing
memory fetches, instruction decoding and execution, and interrupt/error handling. It
receives inputs from the ALU and on-chip peripherals including the timer(s) and the
MICROWIRE/PLUS interface, and generates control signals for these and other parts of
the device.

Arithmetic Logic Unit (ALU)

The ALU performs all logical and arithmetic operations. Inputs to the ALU are provided
by the accumulator, several hard-wired data constants, the carry/half-carry bits and the
memory data register (MDR). The ALU inputs for a given instruction are specified in the
instruction opcode. The accumulator functions as both a source and destination for the
ALU, and is used in all logical and arithmetic instructions. It always contains the result
of the last executed logical, arithmetic, or load/exchange accumulator instruction. The
hard-wired data constants, which include 0000, 0001, and O0OFF Hex are used in
instructions like CLR A, INC A, and DEC A. These instructions have an implicit
addressing mode. The carry (C) and half-carry (HC) bits are used in instructions like
ADC and SUBC. All arithmetic and logical instructions with two operands use the MDR
as one input to the ALU. The MDR may be loaded with operands from data memory or

2-12 ARCHITECTURE

41 5 00—
MUX
— sP > —
— X
— RN
Ll R1o ARITHMETIC
LOGIC -
' Ro UNIT
— R8
— R7 —» MEMORY DATA
REGISTER 00—
DATA H Ré (MDR) PSW
MEMORY 01— Mux —
— RS
FF—]
—> — R4
— — R3
H R2
}i g~
H RO
MEMORY
ADDRESS
REGISTER
(MAR) A
INTERNAL DATA BUS
CONTROL LOGIC UNIT PROGRAM COUNTER
CONTROL OUTPUTS«—

STATUS INPUTS —py

CNTRL

INSTRUCTION
DECODER

}

PROGRAM MEMORY

cop8_intf_alu

Figure 2-4 Control Logic and ALU Interface

the instruction register (immediate data specified in an instruction opcode). Since only
one MDR exists, arithmetic and logical instructions can not be performed directly on two
operands from data and/or program memory. Such operations require one operand from
memory to be loaded into the accumulator prior to execution.

ARCHITECTURE 2-13

2.5.1 Memory Fetches

The following two sections describe the manner in which the COP888 accesses data and
program memory. Memory access time greatly affects total instruction execution time,
and is therefore an important element in understanding the COP888 microcontroller
timing.

Data Memory Fetches

All data memory accesses are performed using the internal memory address register
(MAR). The contents of MAR selects the location within the data memory address space
to be read/written by the current instruction. It should be noted that Memory Direct to
Memory Direct data transfers and operations are not supported by the instruction set.

The MAR is loaded with the contents of the B pointer during the last instruction cycle of
all instructions. Therefore, instructions which use the Register B Indirect mode of
addressing are extremely efficient. This is because the address of the memory location to
be accessed during an instruction is already present in the MAR at the start of the
instruction. Instructions which use Memory Direct addressing or Register X Indirect
addressing to access data memory require an extra one or two instruction cycles to fetch
and load the desired memory address into the MAR before the actual instruction is
executed.

Some instructions which use Memory Direct addressing are more efficient when
addressing the data registers located between 00F0 and 00FF Hex. This is because the
complete memory address of the register is contained in the first byte of the instruction
opcode. This allows the MAR to be loaded with the new address in the first instruction
cycle of the instruction. Instructions which do not access data memory do not affect the
MAR. During the execution of instructions which use the ALU and an operand from data
memory, the contents of the memory location addressed by the MAR is loaded into the
memory data register (MDR) before being fed into the ALU.

Program Memory Fetches

All program memory accesses are performed using the 15-bit program counter (PC). This
includes accesses to program memory for table lookups. At any given time, the PC
addresses one byte within program memory. This byte is loaded into the instruction
register for decoding, or used as immediate or memory address data. All data/opcode
fetches cause the PC to be incremented automatically, so that the PC typically points to
one program memory location ahead of the current instruction byte being executed. This
allows pre-fetching of opcodes. This is also the reason why table lookup instructions
(LAID, JID) located at the last byte within a 256-byte program memory page cause
fetches from program memory locations in the following 256-byte page. (The JID and
LAID instructions replace the lower eight bits of the PC, and rely on the current upper
seven bits of the PC to form the complete address for table lookups. However, the upper
seven bits of the PC change when the PC is automatically incremented over a page
boundary.)

2-14 ARCHITECTURE

2.5.2 Instruction Decoding and Execution

All instruction decoding is performed by the CPU control logic. Single-byte opcodes
require a single memory fetch. Therefore, many single-byte opcodes are single-cycle.
Multiple-byte opcodes require more than one program memory fetch; the first byte is
decoded to determine the number of program fetches needed to complete the instruction.
Only one program memory fetch can be performed during a single instruction cycle.
Therefore, an instruction always requires at least as many instruction cycles to execute
as number of opcode bytes.

NOTE: Data and program memory fetches may be performed in the same instruc-
tion cycle due to the Harvard-style architecture of the COP888 Family.

The instruction cycle clock (t¢) always equals one-tenth the frequency of the clock signal
at the CKI pin. All instructions are executed in multiples of the instruction cycle clock
period.

During the last cycle of an instruction, the next instruction’s first byte is always fetched
from program memory. In addition, the PC is always incremented. This means that at
the start of the first cycle of an instruction, the opcode for that instruction is already in
the IR and the PC is pointing to the next instruction byte. In order to generate skips (non-
execution of an instruction), the microcontroller Skip Logic is activated. This prevents an
instruction (already located in the IR) from being executed by the microcontroller.
Skipped instructions require X number of cycles to be skipped, where X equals the
number of bytes in the skipped instruction’s opcode.

The exact number of instruction cycles required for an instruction to execute can be found
in Section 9.6. As noted previously, memory fetches (and therefore addressing modes)
greatly influence instruction execution time. In order to optimize instruction execution
time, the programmer should pay special attention to these items when developing code.

The following sections explain the steps performed by the control logic when executing
different instructions.

One-Cycle Instructions

During the single cycle of one of these instructions, the following steps are performed:

1. The instruction is decoded and executed. (The instruction opcode is already
in the IR at the start of the instruction cycle due to pre-fetching).

2. The next instruction is fetched from program memory.

3. The PC is incremented.

Two-Cycle Instructions

A two-cycle instruction has either a one-byte or two-byte opcode. These instructions each
fall into one of five instruction categories: logical, arithmetic, conditional, exchange or
load. The operations performed during two-cycle instructions are given below.

ARCHITECTURE 2-15

The logical, arithmetic and conditional instructions that use the Immediate addressing
mode each have the following steps:

Cycle 1:

Cyecle 2:

Decode the opcode for the instruction. Fetch the immediate data from pro-
gram memory. Execute the instruction. Activate Skip Logic if necessary. In-
crement the PC. (The logical/arithmetic or conditional instruction is complete
at the end of this instruction cycle.)

Fetch the first byte of the next instruction. Increment the PC.

Two-cycle load and exchange accumulator instructions, and load memory indirect using
the B pointer have these steps:

Cycle 1:

Cycle 2:

Decode the opcode for the instruction. If necessary, fetch the immediate data
from program memory and increment the PC. Execute the instruction. (The
load or exchange is complete at the end of this instruction cycle.)

If necessary, increment or decrement the B pointer. Load the contents of the
B pointer into MAR. Fetch the first byte of the next instruction. Increment
the PC.

Three-Cycle Instructions

The device has nine three-cycle load and exchange instructions. A generic overview of the
sequence of steps performed by the COP888 in executing these instructions is given

below.

Cycle 1:

Cycle 2:

Cycle 3:

Decode the opcode for the instruction. If necessary, fetch the memory direct
address from program memory and increment the PC. Load the MAR with
the address of the data memory location to be accessed (either the address
fetched from program memory or the contents of the X pointer depending on
the instruction). If necessary, increment or decrement the X pointer.

If necessary, fetch the immediate data from program memory and increment
the PC. Execute the instruction. (The load or exchange is complete at the end
of this instruction cycle.)

Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The remaining three-cycle instructions are all unique. Therefore, the sequence of events
is given separately for each.

2-16 ARCHITECTURE

JP Instruction

Cycle 1: At the beginning of this instruction cycle, the PC is one count ahead of the ad-
dress of the JP instruction. Decode the instruction opcode. Add the lower six
bits of the contents of the IR (the JP opcode) to the lower byte of the PC.

Cycle 2: If the offset contained in the JP opcode was positive and the add performed
in Cycle 1 had a carry out (overflow), increment the upper byte of the PC. If
the offset was negative and no carry out was produced by the add in Cycle
1(underflow), decrement the upper byte of the PC.

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

JMP Instruction

Cycle 1: Decode the instruction opcode. Fetch the lower byte of the branch address
from program memory. Load the lower byte of the PC with the fetched
address.

Cycle 2: Load the four least significant bits of the JMP opcode stored in the IR into the
four least significant bits of the upper byte of the PC.

Cycle 3: Fetch the first byte of the next instruction (instruction located at the branch
address). Increment the PC.

LAID Instruction

Cycle 1: Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Cycle 2: Fetch the byte from program memory addressed by the PC. Transfer the con-
tents of the accumulator back to the lower-byte of the PC. Store the fetched
byte in the accumulator.

Cycle 3: Fetch the first byte of the next instruction. Increment the PC.

JID Instruction

Cycle 1:

Cycle 2:

Cycle 3:

Decode the instruction opcode. Exchange the lower byte of the PC with the
contents of the accumulator.

Fetch the byte from program memory addressed by the PC. Transfer the con-
tents of the PC back to the accumulator (restore the contents of the ACC).
Store the fetched byte in the lower-byte of the PC.

Fetch the first byte of the next instruction. Increment the PC.

ARCHITECTURE 2-17

DRSZ Instruction

Cycle 1:

Cycle 2:

Cycle 3:

Decode the opcode of the instruction. Load the MAR with the address of the
register being decremented.

Decrement the contents of the register addressed by the MAR. If the result is
zero, activate the Skip Logic.

Load the MAR with the contents of the B pointer. Fetch the first byte of the
next instruction. Increment the PC.

PUSH Instruction

Cycle 1: Decode the opcode of the instruction. Load the MAR with the address of the
first available stack location (the address currently in SP). Decrement the
stack pointer to point to the next available stack location.

Cycle 2: Load the memory location addressed by MAR (the first available stack loca-
tion) with the contents of the accumulator.

Cycle 3: Load the MAR with the contents of the B pointer. Fetch the first byte of the
next instruction. Increment the PC.

POP Instruction

Cycle1: Decode the opcode of the instruction. Increment the Stack Pointer to point to
the last entry in stack. Load the MAR with the address contained in the Stack
Pointer.

Cycle2: Load the accumulator with the contents of the memory location addressed by
the MAR (last stack entry).

Cycle 3: Load the MAR with the contents of the B pointer. Fetch the first byte of the

next instruction. Increment the PC.

Four-Cycle Instructions

All four-cycle instructions except JMPL use the Memory Direct addressing mode. The
following steps outline the general sequence of events performed during the execution of
these memory direct instructions.

Cycle 1:

Cycle 2:
Cycle 3:

Cycle 4:

Decode the Memory Direct mode opcode prefix. Fetch the memory direct ad-
dress from program memory and store it in the MAR. Increment the PC.

Fetch the actual opcode from program memory and store it in the IR.

Execute the instruction. (The bit manipulation, conditional test, or logical/
arithmetic operation is complete at the end of this instruction cycle.)

Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

2-18 ARCHITECTURE

A JMPL has the following steps:

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

Decode the JMPL opcode. Fetch the second byte of the instruction (the high-
order byte of the branch address) and store it in IR. Increment the PC.

Fetch the third byte of the instruction (the low-order byte of the branch ad-
dress) and load it into the lower byte of the PC.

Load the high-order byte of the branch address from the IR into the upper
byte of the PC.

Fetch the next instruction (located at the branch address). Increment the PC.

Five-Cycle Instructions

The COP888 has six five-cycle instructions; JSR, JSRL, VIS, RET, RETI and RETSK. All
of these instructions force program branches.

The COP888 performs the following steps during the JSR and JSRL instructions:

Cycle 1:

Cycle 2:

Cycle 3:

Cycle 4:

Cycle 5:

Decode the opcode for the instruction. Load the MAR with the address of the
first available stack location (the address currently in SP). Decrement the
stack pointer to point to the next available stack location. If JSRL, fetch the
next byte of the instruction and increment the PC.

Increment the PC. Push the low-order byte of the return address onto the
stack (store at the location addressed by MAR). Fetch the next byte of the in-
struction. Load the low-order byte of the subroutine address (addressed by
the MAR) into the PC.

Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Decrement the stack pointer to point to the next avail-
able stack location.

Push the high-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). If JSR, load the four bits of the high-order byte of
the subroutine address stored in the IR into the PC. If JSRL, load the seven
bits of the high-order byte of the subroutine address stored in the IR into the
PC.

Load the contents of the B pointer into the MAR. Fetch the first byte of the
next instruction. Increment the PC.

The COP888 performs the following steps during the VIS instruction:

Cycle 1:

Decode the opcode for the instruction. Load the low-order byte of the PC with
the low-order byte of the address of the location of the vector which corre-
sponds the highest priority pending flag. The high-order byte of the PC al-
ready contains the high-order byte of the address of the location of the vector
since the vector table must reside within the same 256-byte block as the VIS
instruction. (The VIS instruction may reside in the last location of the 256-
byte block located above the vector table. In this case, the incrementing of the
PC at the end of the previous instruction increments the high-order byte of

ARCHITECTURE 2-19

the PC so that it is pointing to the correct block at the time the VIS instruc-
tion is actually executed.)

Cycle 2: (At the start of this cycle, the PC is pointing to the high-order byte of the in-
terrupt vector.) Fetch the high-order byte of the interrupt vector from pro-
gram memory and load it into the instruction register (IR). Increment the PC
to point to the low-order byte of the interrupt vector.

Cycle 3: Fetch the low-order byte of the interrupt vector from program memory and
load it into the low-order byte of the PC.

Cycle 4: Transfer the contents of the IR to the high-order byte of the PC.
Cycle 5: Fetch the first byte of the next instruction. Increment the PC.

The COP888 performs the following steps during the RET, RETSK, and RETI
instructions:

Cycle 1: Decode the opcode for the instruction. Increment the stack pointer to point to
the last entry on the stack. Load the MAR with the address of the last entry
in the stack (the address in the updated SP).

Cycle 2: Pop the high byte of the return address off the stack (the contents of the mem-
ory location addressed to by the MAR). Load the upper byte of the PC with
the high byte of the return address.

Cycle 3: Increment the stack pointer to point to the next byte of data on the stack.
Load the MAR with the address of the last entry in the stack (the address in
the updated SP).

Cycle 4: Pop the low-byte of the return address off the stack (the contents of the mem-
ory location addressed to by the MAR). Load the lower byte of the PC with the
low byte of the return address.

Cycle 5: Load the contents of the B pointer into the MAR. If RETI, set the GIE bit. If
RETSK, activate skip logic to skip the instruction at the return address.

Fetch the first byte of the instruction at the return address. Increment the
PC.

Seven-Cycle Instructions

The Software Trap is the only instruction which requires seven cycles to execute. This
instruction is performed when a 00 opcode (INTR) is loaded into the Instruction Register.
The execution of this instruction when an interrupt is not pending is considered an error.
Refer to Section 2.5.3 for information on the execution of this instruction.

2.5.3 Interrupt and Error Handling

The COP888 microcontrollers have a maximum of 16 interrupt sources. All interrupts
force a jump to location 00FF Hex in program memory. Therefore, all interrupt and error
handling routines/branches should be located at 00FF Hex.

2-20 ARCHITECTURE

The CPU forces a jump to 00FF Hex by jamming the INTR opcode (00) into the IR upon
detecting an interrupt. The detection of an error (Software Trap) is the result of the INTR
opcode being loaded into the IR as a part of the normal program sequence. An interrupt
that occurs while an instruction is being executed is not acknowledged until the end of
the current instruction. If the instruction following the current instruction is to be
skipped, the next instruction is skipped before the pending interrupt is acknowledged
and the INTR opcode is jammed into the IR. The COP888 requires seven cycles to execute
the INTR instruction.

Cycle 1: Decode 00 opcode. If not a Software Trap, reset the GIE bit. Decrement the
lower byte of the PC. (Note: The address of the instruction that was ready to
be executed is the return address, this needs to be saved on the stack. How-
ever, the PC is one count ahead of the current instruction, and therefore must
be decremented before being saved on the stack.)

Cycle 2: If the decrementing of the lower byte of the PC caused a borrow, decrement
the upper byte of the PC.

Cycle 3: Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Increment the stack pointer to point to the next byte
of data on the stack.

Cycle 4: Push the low-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). Load the low-order byte of the PC with OFF Hex.

Cycle 5: Load the MAR with the address of the first available stack location (the ad-
dress currently in SP). Decrement the stack pointer to point to the next avail-
able stack location.

Cycle 6: Push the high-order byte of the return address onto the stack (store at the lo-
cation addressed by MAR). Load the upper byte of the PC with 00 Hex.

Cycle 7: Load the contents of the B pointer into the MAR. Fetch the first byte of the
instruction located at 00FF Hex. Increment the PC.

Once a branch to location 00FF Hex occurs, the programmer can use the VIS instruction
or poll the available pending flags to determine the source of the interrupt. Refer to
Chapter 3 for more information on interrupts and the Software Trap.

2.6 RESET

The COP888 enters a reset state immediately upon detecting a logic low on the RESET
pin. When the RESET pin is pulled to a logic high, the device begins code execution
within two instruction cycles. The RESET pin must be held low for a minimum of one
instruction cycle to guarantee a valid reset. During power-up initialization, the external
circuitry must ensure that the RESET pin is held low until the COP888 is within the
specified V(¢ voltage range. Additionally, if a crystal oscillator or resonator is used, the
designer must ensure that the oscillator has had time to stabilize before the RESET pin
is pulled high. An R/C delay circuit on the RESET pin with a delay 5 times greater than
the power supply rise time is recommended.

ARCHITECTURE 2-21

All COP888 microcontrollers contain logic to initialize their internal circuitry during the
reset state. The following initializations are performed at reset:

* The Program Counter is loaded with 0000 Hex.

* All bits of the PSW, CNTRL and ICNTRL registers are reset. This disables all in-
terrupts, stops Timer 1, and disables MICROWIRE/PLUS.

* The SP is initialized to 6F Hex.

The accumulator, all data memory, and registers (including the B and X pointers) are not
initialized during Reset. Refer to the device-specific chapters for details on the reset
initialization of registers not found in the COP888 microcontroller core.

2.7 CLOCK OPTIONS

Most COP888 parts support two clock options: crystal oscillator and RC oscillator.
Depending on the device type, the clock option is either selected via a mask option or
programmed into the device by the user. Selection of a specific clock option affects the
operating frequency, clocking accuracy, and power consumption of a particular device.
Refer to the device-specific data sheets to obtain accurate information on frequency
ranges, power consumption, and component values for the different oscillator circuits.

2.7.1 Crystal Oscillator

The dedicated CKI (clock input) pin and G7 (CKO) on the COP888 devices can be
connected to make a crystal controlled oscillator as shown in Figure 2-5. If G7 is used as
the CKO pin, it is not available for general-purpose use.

| CKI oKol

R2
‘\,-§ =k
+=c2 = C1

cop8_cry_osci

Figure 2-5 Crystal Oscillator Circuit

2-22 ARCHITECTURE

2.7.2 RC Oscillator

The dedicated CKI pin can be used to construct an RC oscillator as shown in Figure 2-6.
With this option, G7 is available as a general-purpose input pin.

lcki cko

¥
General Purpose Input

Tl
Uml]
[e]

cop8_rc_osci

Figure 2-6 RC Oscillator Circuit

ARCHITECTURE 2-23

Chapter 3

INTERRUPTS

3.1 INTRODUCTION

An interrupt is an event that temporarily stops the normal flow of program execution and
causes a separate interrupt service routine to be executed. After the interrupt has been
serviced, execution continues with the next instruction in the program that would
normally have been executed following the point of interruption.

The architecture of the COP888 family supports up to 16 different interrupts. The actual
number of interrupts in a device depends on the individual device type. For example,
devices that have a UART also have interrupts associated with the UART, while other
devices lack that type of interrupt. The interrupts are vectored, meaning that a set of
vectors (memory location pointers) stored in program memory directs the processor to
one of several interrupt service routines. A special instruction called VIS (Vector
Interrupt Select) directs the processor to the vector location based on the cause of the
interrupt.

The various types of interrupts can be divided into two categories, maskable and non-
maskable. A maskable interrupt can be enabled or disabled by the software, allowing the
software to determine whether or not an occurrence of the event will trigger an interrupt.
A non-maskable interrupt cannot be masked, and will always trigger an interrupt, except
in certain cases when a non-maskable interrupt is already being serviced.

Figure 3-1 is a block diagram that illustrates the internal interrupt logic of a
hypothetical COP888 device. The interrupt logic of actual COP888 devices is very similar
to what is shown in the figure, except that the source of interrupts differ from one device
type to another. The names along the left side of the diagram represent the events that
can cause an interrupt. Some of these events originate from on-chip functions, while
others come from off-chip devices connected to the COP888.

An interrupt is serviced when the interrupt signal is activated (the output of the OR gate
on the right-hand side of the illustration). The occurrence of any one event can trigger an
interrupt. The event can occur at any time: before, during, or after an instruction cycle.
An occurrence immediately latches a flag bit called the pending flag. The chip hardware
checks the interrupt logic at the start of each instruction, and a pending interrupt is
acknowledged and handled at that time if the interrupt is enabled.

The first two interrupts, Software Trap and NMI, are both non-maskable and are always
enabled. (All COP888 devices have a Software Trap, but not all have the NMI interrupt.)
The remaining interrupts are all maskable. In order for a maskable interrupt event to
trigger an interrupt, its own individual interrupt enable bit must be set, and the GIE
(Global Interrupt Enable) bit must also be set in the PSW register. All of the maskable
interrupts can be disabled together by clearing the GIE bit.

The different types of interrupts are organized by rank. If two or more interrupts are
detected at the same time, the interrupt arbitration logic of the device determines which

INTERRUPTS 3-1

SOFTWARE TRAP

NMI PENDING FLAGS

EXTERNAL —

IDLE TIMER —

I
Yy

TIMER T1A _]

:
u

INTERRUPT

TIMER T1B —]

uWIRE/PLUS —

PENDING FLAGS

UART —

PORT L/ —
WAKEUP

JUUUUU

uuu%

INTERRUPT ENABLE GIE

888_intr_blk

Figure 3-1 COP888 Interrupt Block Diagram

interrupt has the highest priority, and that interrupt is serviced first. The interrupts in
Figure 3-1 are shown in order of rank, starting from the highest-priority interrupt,
Software Trap.

3.2 VIS INSTRUCTION AND VECTOR TABLE

The general interrupt service routine, which starts at address 00FF Hex, must be
capable of handling all types of interrupts. The VIS instruction, together with an
interrupted vector table, directs the microcontroller to the specific interrupt handling
routine based on the cause of the interrupt.

VIS is a single-byte instruction, typically used at the very beginning of the general
interrupt service routine at address O0FF Hex, or shortly after that point, just after the
code used for context switching (as described in Section 3.3). The VIS instruction
determines which enabled and pending interrupt has the highest priority, and causes an
indirect jump to the address corresponding to that interrupt source. The jump addresses
(“vectors”) for all possible interrupt sources are stored in a vector table.

3-2 INTERRUPTS

The vector table is 32 bytes long and resides at the top of the 256-byte block containing
the VIS instruction. However, if the VIS instruction is at the very top of a 256-byte block
(such as at 00FF Hex), the vector table resides at the top of the next 256-byte block. Thus,
if the VIS instruction is located somewhere between 00FF and 01DF Hex (the usual
case), the vector table is located between addresses 01E0 and O1FF hex. If the VIS
instruction is located between 01FF and 02DF Hex, then the vector table is located
between addresses 02EQ and 02FF Hex, and so on.

Each vector is 15 bits long and points to the beginning of a specific interrupt service
routine somewhere in the 32-Kbyte memory space. Each vector occupies two bytes of the
vector table, with the higher-order byte at the lower address. The vectors are arranged
in order of interrupt priority. The vector of the maskable interrupt with the lowest rank
is located at OyEQ (higher-order byte) and OyEl (lower-order byte). The next priority
interrupt is located at OyE2 and OyE3, and so forth in increasing rank. The NMI has the
second highest rank and its vector is always located at OyFC and OyFD. The Software
Trap has the highest rank and its vector is always located at OyFE and OyFF.

Table 3-1 shows the source of interrupts in a hypothetical COP888 device, the interrupt
arbitration ranking, and the locations of the corresponding vectors in the vector table. A
similar table can be found in the device-specific chapters for each of the COP888 devices.
Those tables are similar to this one, except for slight differences in the list of interrupt
types.

The vector table should be filled by the user with the memory locations of the specific
interrupt service routines. For example, if the Software Trap routine is located at 0310
Hex, then the vector location 01FE-01FF should contain the data 03 and 10 Hex; the
high address byte is stored at the lower address. When a Software Trap interrupt occurs
and the VIS instruction is executed, the program jumps to the address specified in the
vector table, 0310 Hex.

The interrupt sources shown in Table 3-1 are listed in order of rank, from highest to
lowest priority. If two or more enabled and pending interrupts are detected at the same
time, the one with the highest priority is serviced first. Upon return from the interrupt
service routine, the next highest-level pending interrupt is serviced. Interrupts labelled
“Reserved” in the table are not used in the device, but are reserved for future use should
another feature be added that can generate an interrupt.

If the VIS instruction is executed, but no interrupts are enabled and pending, the lowest-
priority interrupt vector is used, and a jump is made to the corresponding address in the
vector table. This is an unusual occurrence, and probably the result of an error. It can
result from a change in the enable bits or pending flags prior to using the VIS instruction,
or from inadvertent execution of the VIS command outside of the context of an interrupt.
It is a good idea to make this vector point to the Software Trap interrupt service routine
or some other error handling routine. A normal RETI instruction should not be used in
any such routine because the stack might not contain a valid return address.

To ensure reliable operation, the user should always use the VIS instruction to determine
the source of an interrupt. Although it is possible to poll the pending bits to detect the
source of an interrupt, this practice is not recommended. The use of polling allows the
standard arbitration ranking to be altered, but the reliability of the interrupt system is
compromised. The polling routine must individually test the enable and pending bits of
each maskable interrupt. If a Software Trap interrupt should occur, it will be service last,

INTERRUPTS 3-3

Table 3-1 Interrupt Vector Table

Arbitration Rank | Interrupt Description | Vector Address®
1 Software Trap 01FE-01FF
2 NMI 01FC-01FD
3 External Interrupt Pin GO | 01FA-01FB
4 IDLE Timer Underflow 01F8-01F9
5 Timer T1A/Underflow 01F6-01F7
6 Timer T1B 01F4-01F5
7 MICROWIRE/PLUS 01F2-01F3
8 (Reserved) 01F0-01F1
9 (Reserved) 01EE-01EF
10 (Reserved) 01EC-01ED
11 Timer T2A/Underflow 01EA-01EB
12 Timer T2B 01E8-01E9
13 (Reserved) 01E6-01E7
14 (Reserved) 01E4-01E5
15 Port L/Wakeup 01E2-01E3
16 Default VIS Interrupt 01E0-01E1

a. The location of the vector table depends on the location of the VIS instruction. The vector
addresses shown in the table assume a VIS instruction between O0FF and 01DF Hex.

even though it should have the highest priority. Under certain conditions, a Software
Trap could be triggered but not serviced, resulting in a an inadvertent “locking out” of all
maskable interrupts by the Software Trap pending flag. Problems such as this can be
avoided by using the VIS instruction.

3.3 CONTEXT SWITCHING

In some applications, the first action that should be carried out in the interrupt service
routine is to save the contents of the registers so that the “context” of the microcontroller
can be restored just before returning from the interrupt. The register values can be saved
on the stack. When interrupt servicing is finished, the register values can be popped from
the stack and restored to the registers, allowing program execution to proceed with the
original register values.

For example, if registers A, X, and B are used within the interrupt service routines, the
following assembly code can be used to save the contents of those registers.

3-4 INTERRUPTS

.=00FF ;Start at interrupt address

SAVE: PUSH A ;Push Accumulator contents onto stack
LD A,B
PUSH A ;Push B pointer onto stack
LD A,X
PUSH A ;Push X pointer onto stack
VIS

Upon completion of interrupt servicing, the following routine can be used to restore the
context to the registers and return from the interrupt.

RESTOR: POP ;Pop X pointer from stack

A
X A,X ;Restore X pointer
POP A :Pop B pointer from stack
X A,B ;Restore B pointer
POP A ;Restore Accumulator contents
RETI ;Return from interrupt

In the example above, the SAVE routine resides at 00FF Hex, the interrupt address, so
it is executed at the beginning for any type of interrupt. The VIS instruction causes a
jump to a specific interrupt service routine, depending on the interrupt source. Each
specific interrupt service routine (except the Software Trap) should end with a jump to
the RESTOR routine.

3.4 MASKABLE INTERRUPTS

All interrupts other than the Software Trap and NMI are maskable. Each maskable
interrupt has an associated enable bit and pending flag bit. The pending bit is latched to
1 when the interrupt condition occurs. The state of the interrupt’s enable bit, combined
with the GIE bit, determines whether an active pending flag actually triggers an
interrupt. All of the maskable interrupt pending and enable bits belong to memory-
mapped control registers, and thus can be controlled by the software.

A maskable interrupt condition triggers an interrupt under the following conditions:
1. The enable bit associated with that interrupt is set.
2. The GIE bit is set.

3. The microcontroller is not processing a non-makable interrupt. (If a non-
maskable interrupt is being serviced, a maskable interrupt must wait until
that service routine is completed.)

An interrupt is triggered only when all of these conditions are met at the beginning of an
instruction. If different maskable interrupts meet these conditions simultaneously, the
highest-priority interrupt will be serviced first, and the other pending interrupts must
wait.

INTERRUPTS 3-5

Upon Reset, all pending bits, individual enable bits, and the GIE bit are reset to zero.
Thus, a maskable interrupt condition cannot trigger an interrupt until the program
enables it by setting both the GIE bit and the individual enable bit. When enabling an
interrupt, the user should consider whether or not a previously activated (set) pending
bit should be acknowledged. If, at the time an interrupt is enabled, any previous
occurrences of the interrupt should be ignored, the associated pending bit must be reset
to zero prior to enabling the interrupt. Otherwise, the interrupt may be simply enabled;
if the pending bit is already set, it will immediately trigger an interrupt. A maskable
interrupt is active if its associated enable and pending bits are set.

At the start of interrupt acknowledgment, the control logic halts normal program
execution by jamming an INTR (00) opcode into the instruction register. As a result, the
following actions occur:

1. The GIE bit is automatically reset to zero, preventing any subsequent mask-
able interrupt from interrupting the current service routine. This feature pre-
vents one maskable interrupt from interrupting another one being serviced.

2. The address of the instruction about to be executed is pushed onto the stack.

3. The program counter is loaded with 00FF Hex, causing a jump to that pro-
gram memory location. A general interrupt service routine must start at that
address.

The COP888 requires seven instruction cycles to perform the actions listed above.

The interrupt service routine stored at location 00FF Hex should use the VIS instruction
(described in Section 3.2) to determine the cause of the interrupt, and jump to the
interrupt handling routine corresponding to the highest-priority enabled and active
interrupt. Alternately, you may choose to poll all interrupt pending and enable bits to
determine the source(s) of the interrupt. If more than one interrupt is active, the program
must decide which interrupt to service.

It is possible for one interrupt source to trigger an interrupt, and a different interrupt
source to be serviced. For example, a low-priority maskable interrupt occurs, setting its
pending flag and triggering an interrupt. While the interrupt is being acknowledged
(jump to O0FF Hex) or context saving is being performed by the general interrupt service
routine, another (higher-priority) maskable event occurs, setting its own pending flag.
When the service routine reaches the VIS instruction, the higher-priority event is
serviced first, and the lower-priority event that triggered the interrupt must wait.
Assuming that no more interrupt events occur, the lower-priority event will be serviced
upon return from the interrupt routine of the higher-priority event.

If you wish to allow nested interrupts, the interrupt service routine may set the GIE bit
to 1 by writing to the PSW register, and thus allow other maskable interrupts to
interrupt the current service routine. If nested interrupts are allowed, caution must be
exercised. You must write the program in such a way as to prevent stack overflow, loss of
saved context information, and other unwanted conditions.

Within a specific interrupt service routine, the associated pending bit should be cleared.
This is typically done as early as possible in the service routine in order to avoid missing
the next occurrence of the same type of interrupt event. Thus, if the same event occurs a

3-6 INTERRUPTS

second time, even while the first occurrence is still being serviced, the second occurrence
will be serviced immediately upon return from the current interrupt routine.

An interrupt service routine typically ends with an RETI instruction. This instruction
sets the GIE bit back to 1, pops the address stored on the stack, and restores that address
to the program counter. Program execution then proceeds with the next instruction that
would have been executed had there been no interrupt. If there are any valid interrupts
pending, the highest-priority interrupt is serviced immediately upon return from the
previous interrupt.

3.5 NON-MASKABLE INTERRUPTS

The architecture of the COP888 family supports two non-maskable interrupts, known as
the Software Trap (INTR instruction) and NMI (Non-Maskable Interrupt pin). All
COP888 devices have the Software Trap interrupt, but some devices do not have an NMI
pin, and therefore do not allow the use of the NMI interrupt. The device-specific chapters
later in this manual indicate whether the NMI interrupt is available.

The non-maskable interrupts do not have individual enable bits, and they are not
affected by (and do not affect) the GIE bit. Thus, they cannot be masked out by software.
However, they each have a pending flag. While a non-maskable interrupt is being
serviced (when its pending flag is set), maskable interrupts are prevented from being
acknowledged, but their pending bits can still be set. Pending maskable interrupts are
acknowledged upon return from the non-maskable interrupt.

A non-maskable interrupt is acknowledged in essentially the same manner as a
maskable interrupt. If the NMI pending flag is found to be set at the beginning of an
instruction, the address the of the next instruction that would normally be executed is
saved on the stack. If the Software Trap pending flag is found to be set at the beginning
of an instruction, the address of the INTR instruction which triggered the Software Trap
is saved on the stack rather than the next normally executed instruction. In either case,
the program then jumps to address O0FF Hex. The VIS instruction directs the
microcontroller to the appropriate interrupt service routine. Note that with non-
maskable interrupts, the GIE bit neither has an effect nor is affected by the interrupt;
the GIE bit is used only with maskable interrupts.

To return from a non-maskable interrupt routine, the RET (Return from Subroutine)
instruction or RETSK (Return from Subroutine and Skip) rather than the RETI (Return
from Interrupt) instruction should be used. Doing so preserves the status of the GIE bit.
The RET instruction pops the address stored on the stack and places it in the program
counter, and execution of the program continues from that point. The RETI instruction
does the same thing, but it also sets the GIE bit to re-enable maskable interrupts; it
should be used only to return from a maskable interrupt routine.

3.5.1 Non-Maskable Interrupt Pending Flags

There is a pending flag bit associated with each non-maskable interrupt, called STPND
for the Software Trap and NMIPND for the NMI interrupt. These pending flags are not
memory-mapped and cannot be accessed directly by the software.

INTERRUPTS 3-7

The pending flags are reset to zero when a chip Reset occurs. When a non-maskable
interrupt event occurs, the associated pending bit is latched to one. When either flag is
set, maskable interrupts are inhibited. The interrupt service routine should contain an
RPND instruction to reset the pending flag to zero.

The RPND instruction always resets the STPND flag, but resets the NMIPND flag only
if the NMI has been acknowledged and the STPND flag is already reset to zero. The
reason for this behavior is because of the interaction between the Software Trap and NMI
interrupts. A Software Trap can interrupt an NMI routine, but a NMI cannot interrupt
a Software Trap routine. Thus, if both the STPND and NMIPND flags are set, it must be
because an NMI routine was in progress and was interrupted by a Software Trap. Under
these conditions, an RPND instruction in the Software Trap routine resets the STPND
flag, thus ending the Software Trap pending condition, but not the NMIPND flag. Upon
return from interrupt (if so programmed), a second RPND in the NMI routine will reset
the NMIPND flag.

3.5.2 Software Trap

The Software Trap is a special kind of non-maskable interrupt which occurs when the
INTR instruction (used to acknowledge interrupts) is fetched from program memory and
placed in the instruction register. This can happen in a variety of ways, usually because
of an error condition. Some examples of causes are listed below.

« If the program counter incorrectly points to a memory location beyond the avail-
able program memory space, the non-existent memory locations are interpreted as
the INTR instruction.

» If the INTR instruction is deliberately placed in unused sections of the program
memory, and an unexpected condition occurs which causes the code in these sec-
tions to be executed, a Software Trap will occur.

+ If the stack is popped beyond the allowed limit (address 006F Hex), a Software
Trap is triggered.

* A Software Trap can be triggered by a temporary hardware condition such as a
brownout or power supply glitch.

The Software Trap has the highest priority of all interrupts. When a Software Trap
occurs, the STPND bit is set, which inhibits all other interrupts. Nothing can interrupt
a Software Trap service routine except for another Software Trap. The STPND can be
reset only by the RPND instruction or a chip Reset.

The Software Trap indicates an unusual or unknown error condition. Generally,
returning to normal execution at the point where the Software Trap occurred cannot be
done reliably. Therefore, the Software Trap service routine should re-initialize the stack
pointer and perform a recovery procedure that re-starts the software at some known
point, similar to a chip Reset, but not necessarily performing all the same functions as a
chip Reset. The routine must also execute the RPND instruction to reset the STPND flag.
Otherwise, all other interrupts will be locked out. To the extent possible, the Software
Trap routine should record or indicate the context of the microcontroller so that the cause
of the Software Trap can be determined.

3-8 INTERRUPTS

If you wish to return to normal execution from the point at which the Software Trap was
triggered, the program must first execute RPND, followed by RETSK (Return from
Subroutine and Skip) rather than RETI (Return from Interrupt) or RET (Return from
Subroutine). This is because the return address stored on the stack is the address of the
INTR instruction that triggered the interrupt. You need to skip that instruction in order
to proceed with the next one. Otherwise, an infinite loop of Software Traps and returns
will occur.

Programming a return to normal execution requires careful consideration. If the
Software Trap routine is interrupted by another Software Trap, the second RPND will
reset the STPND flag; upon return to the first Software Trap routine, the STPND flag
will have the wrong state. To avoid problems such as this, program the Software Trap
routine to perform a recovery procedure rather than a return to normal execution.

Under normal conditions, the STPND flag is reset by a RPND instruction in the Software
Trap service routine. If a programming error or hardware condition (brownout, power
supply glitch, etc.) sets the STPND flag without providing a way for it to be cleared, all
other interrupts will be locked out. To alleviate this condition, the software should
contain extra RPND instructions in the main program and in the Watchdog service
routine (if present). There is no harm in executing extra RPND instructions in these
parts of the program.

3.5.3 NMI

The NMI interrupt is a non-maskable interrupt triggered by a positive-going edge on the
NMI input pin. (Some COP888 devices have do not have an NMI pin, and therefore do
not allow the NMI interrupt to be used.) A positive-going edge latches the NMIPND flag
to a 1, and causes subsequent edges on the NMI pin to be ignored. At the beginning of the
next instruction, the NMI request is acknowledged unless a Software Trap interrupt is
being serviced.

The NMI interrupt has the second-highest priority among all interrupts. An NMI service
routine can be interrupted only by a Software Trap and nothing else. If a second NMI
request is received on the NMI pin during an NMI routine with the NMIPND flag still
set, that second request is ignored and lost.

The NMI service routine should end with an RPND instruction to reset the NMIPND
flag, immediately followed by a RET (Return from Subroutine) instruction to return from
the interrupt. (RET should be used instead of RETI to preserve the status of the GIE bit.)
This two-instruction sequence (RPND-RET) allows any enabled and pending maskable
interrupts to be serviced after execution of the RET instruction. The actual clearing of
the NMIPND bit is delayed one instruction cycle from the execution of the RPND bit (the
RPND is executed during the first instruction cycle of the RET instruction). This allows
the RET to be executed first, before allowing any pending interrupt to be acknowledged.

3.5.4 Software Trap and NMI Interaction

In systems where both the Software Trap and NMI can be used, it is important to
understand what happens when both types of interrupts occur very close to each other in
time, and to understand the behavior of the RPND instruction. RPND always clears the

INTERRUPTS 3-9

STPND flag, but clears the NMIPND flag only if the NMI has been acknowledged and
the STPND flag is already cleared. The flag clearing performed by the RPND instruction
is delayed one instruction cycle from the execution of the instruction.

First consider the case where an NMI service routine is in progress and a Software Trap
occurs. The Software Trap is acknowledged, the program jumps to 00FF hex, and the VIS
instruction causes a jump to the Software Trap routine, which has the highest priority.
At the end of this routine, an RPND instruction clears the STPND flag, but not the
NMIPND flag because the user might want to return to the NMI service routine in order
to complete it. If the Software Trap routine re-starts the software at a known point
(ignore the return address stored on the stack), a second RPND instruction should be
used in the Software Trap service routine to clear the NMIPND flag. (Two RPND
instructions in a row will first clear the STPND flag and then the NMIPND flag.) The
software routine does not know (and cannot find out) whether the NMIPND flag is set,
but it is not a problem to have an extra RPND instruction in the routine.

Now consider the case where a Software Trap routine is in progress and an NMI
interrupt request is received. The NMI is not acknowledged and must wait until the
STPND flag has been cleared. If the Software Trap service routine ends with a RPND
followed by a RETSK, the pending NMI will interrupt the CPU right after the RETSK.
If the Software Trap routine ends with two RPND instructions as explained in the
previous paragraph, the NMI will be acknowledged after the second RPND instruction.
The second RPND instruction does not clear the NMIPND flag because at that point, the
NMI has not yet been acknowledged.

In summary, the RPND instruction always resets the STPND bit and resets the NMI
pending bit only if the following two conditions are satisfied:

1. The ST pending bit is not set.
2. The NMI has already interrupted the CPU (actually caused an interrupt).

The COP888 uses the following types of interrupts, listed below in order of priority:

1. The Software Trap non-maskable interrupt, triggered by the INTR (00 op-
code) instruction. The Software Trap is acknowledged immediately. This in-
terrupt service routine can be interrupted only by another Software Trap.
The Software Trap should end with two RPND instructions followed by a re-
start procedure.

2. NMI non-maskable interrupt, triggered by a positive-edge transition on the
NMI input pin (not available on some COP888 devices). An NMI request will
interrupt any lower-level interrupt (i.e. any maskable interrupt) in progress.
An NMI service routine can be interrupted only by a Software Trap. If anoth-
er NMI request is received during an NMI service routine, the second NMI
request is ignored and lost. The NMI routine should end with the instructions
RPND and RET or RPND followed by a re-start procedure.

3-10 INTERRUPTS

3. Maskable interrupts, triggered by an on-chip peripheral block or an external
device connected to the COP888. The list of maskable interrupts and their
priority ranking vary from one device type to another. Under ordinary condi-
tions, a maskable interrupt will not interrupt any other interrupt routine in
progress. A maskable interrupt routine in progress can be interrupted by any
non-maskable interrupt request (NMI or Software Trap). A maskable inter-
rupt routine should end with an RETI instruction.

INTERRUPTS 3-11

Chapter 4

TIMERS

4.1 INTRODUCTION

The COP888 device contains a versatile 16-bit timer/counter that can satisfy a wide
range of application requirements. The timer can be configured to operate in any of three
modes:

* Processor-independent Pulse Width Modulation (PWM) mode, which generates
pulses of a specified width and duty cycle

« External event counter mode, which counts occurrences of an external event

* Input capture mode, which measures the elapsed time between occurrences of an
external event

The 16-bit timer/counter is designated Timer T1. Many COP888 devices have more than
one of this type of timer, each timer having its own set of registers and I/O pins.
Additional timers of this type are designated T2, T3, and so on. See the device-specific
chapters for information on the number of timers contained in any particular device.

Many devices also have an IDLE Timer, designated TO, which is used for different
purposes: for timing the duration of the IDLE mode, for timing the Watchdog service
window, and for timing the start-up delay when exiting the HALT mode. The structure
of the IDLE Timer is described in this chapter. Usage of the IDLE timer in different
contexts is covered in other chapters of this manual.

4.2 TIMER/COUNTER BLOCK

The section of the device containing the timer circuitry is called the timer/counter block.
This block contains a 16-bit counter/timer register, designated T1, and two associated 16-
bit autoload/capture registers, designated R1A and R1B. Each 16-bit register is
organized as a pair of 8-bit memory-mapped register bytes. The register bytes reside at
the following data memory addresses:

Register Address

T1: 00EA-00OEB
R1A: 00EC-00ED
R1B: 00E6-00E7

In each case, the lower byte resides at the lower memory address.

The timer/counter block uses two I/O pins, designated T1A and T1B, which are alternate
functions of G3 and G2 (Port G, bits 3 and 2), respectively.

TIMERS 4-1

The timer can be started or stopped under program control. When running, the timer
counts down (decrements). Depending on the operating mode, the timer counts either
instruction clock cycles or transitions on the T1A pin. Occurrences of timer underflows
(transitions from 0000 to FFFF) can either generate an interrupt and/or toggle the T1A
pin, also depending on the operating mode.

There are two interrupts associated with the timer, designated the T1A interrupt and the
T1B interrupt. When timer interrupts are enabled, the source of the interrupt depends
on the timer operating mode: either a timer underflow, a transfer of data to or from the
R1A or R1B register, or an input signal received on the T1B pin.

4.3 TIMER CONTROL BITS

Timer T1 is controlled by reading and writing eight bits contained within three registers
of the CPU core: the PSW (Processor Status Word), CNTRL (Control), and ICNTRL
(Interrupt Control) registers. By programming these control bits, the user can enable or
disable the timer interrupts, set the operating mode, and start or stop the timer. The
control bits operate as described in Tables 4-1 and 4-2.

Table 4-1 Timer Control Bits

Register/Bit | Name Function

PSW/Bit 5 T1PNDA | T1A interrupt pending flag: 1 = T1A interrupt pending,
0 = T1A interrupt not pending

PSW/Bit 4 T1ENA | T1A interrupt enable bit: 1 = T1A interrupt enabled,
0 = T1A interrupt disabled

ICNTRL/Bit 1 | TIPNDB | T1B interrupt pending flag: 1 = T1B interrupt pending,
0 = T1B interrupt not pending

ICNTRL/Bit 0 | TIENB | T1B interrupt enable bit: 1 = T1B interrupt enabled,
0 = T1B interrupt disabled

CNTRL/Bit 7 | T1C3 Timer T1 control bit 3 (see Table 4-2)
CNTRL/Bit 6 | T1C2 Timer T1 control bit 2 (see Table 4-2)
CNTRL/Bit 5 | T1C1 Timer T1 control bit 1 (see Table 4-2)

CNTRL/Bit4 | T1CO Timer T1 run: 1 = Start timer, 0 = Stop timer; or Timer
T1 underflow interrupt pending flag in input capture
mode

4-2 TIMERS

Table 4-2 Timer Mode Control Bits

T1C3- T1B Timer

T1C2- Operating Mode T1A Interrupt Interrupt Counts

T1C1 nterrup On

0-0-0 External event Timer underflow T1B positive | T1A posi-
counter with auto- edge tive edge
load register

0-0-1 External event Timer underflow T1B positive | T1A nega-
counter with auto- edge tive edge
load register

0-1-0 Timer with input cap- | T1A positive edge T1B positive | Instruction
ture registers or timer underflow | edge clock

0-1-1 Timer with input cap- | T1A negative edge | T1B positive | Instruction
ture registers or timer underflow | edge clock

1-0-0 PWM timer with Autoload R1A Autoload R1B | Instruction
autoload registers; clock
without T1A toggle

1-0-1 PWM timer with Autoload R1A Autoload R1B | Instruction
autoload registers; clock
toggle T1A output

1-1-0 Timer with input cap- | T1A positive edge T1B negative | Instruction
ture register or timer underflow | edge clock

1-1-1 Timer with input cap- | T1A negative edge | T1B negative | Instruction
ture register or timer underflow | edge clock

44 TIMER OPERATING MODES

The timer can be configured to operate in any one of three modes. Within each mode,
there are options related to the use of the T1A and T1B I/O pins.

The Pulse Width Modulation (PWM) mode can be used to generate precise pulses of
known width and duty cycle on the T1A pin (configured as an output). The timer is
clocked by the instruction clock. An underflow causes the timer register to be reloaded
alternately from the R1A and R1B registers, and optionally causes the T1A output to
toggle. Thus, the values stored in the R1A and R1B registers control the width and duty
cycle of the signal produced on T1A.

The external event counter mode can be used to count occurrences of an external event.
The timer is clocked by the signal appearing on the T1A pin (configured as an input). An
underflow causes the timer register to be reloaded alternately from the R1A and R1B
registers.

TIMERS 4-3

The input capture mode can be used to precisely measure the frequency of an external
clock that is slower than the instruction clock, or to measure the elapsed time between
external events. The timer is clocked by the instruction clock. A transition received on
the T1A or T1B pin (with the pins configured as inputs) causes a transfer of the timer
contents to the R1A or R1B register, respectively.

4.4.1 PWM Mode

In the Pulse Width Modulation (PWM) mode, the timer counts down at the instruction
clock rate. When an underflow occurs, the timer register is reloaded alternately from the
R1A and R1B registers, and counting proceeds downward from the loaded value. At the
first underflow, the timer is loaded from R1A, the second time from R1B, the third time
from R1A, and so on.

The timer can be configured to toggle the T1A output bit upon underflow. This results in
the generation of a clock signal on T1A with the width and duty cycle controlled by the
values stored in the R1A and R1B registers. If the same values are stored in R1A and
R1B, the resulting signal will have a 50% duty cycle; different values will produce a clock
signal with other percentage duty cycles. This is a “processor-independent” PWM clock
because once the timer is set up, no more action is required from the CPU. In cases where
a clock with a duty cycle other than 50% is desired, no interrupt processing is necessary
to change the reload values. By contrast, a microcontroller that has only a single reload
register requires an interrupt routine to update the reload value (on-time, off-time) on
each underflow.

A block diagram of the timer operating in the PWM mode is shown in Figure 4-1.

16-BIT AUTO RELOAD REGISTER|« >
TIMER R1A
UNDERFLOW
INTERRUPTS
2
A 4 o
z
DATA
T1A| g |—~ LATCH 16-BIT TIMER/COUNTER < > E
=
b z
INSTRUCTION
CLOCK
16-BIT AUTO RELOAD REGISTER]| q
R1B Bl >

888_timer_pwm

Figure 4-1 Timer in PWM Mode

4-4 TIMERS

There are two interrupts associated with the timer, designated T1A and T1B. The two
interrupts are individually maskable by the enable bits TIENA and T1ENB. Thus, the
user can generate an interrupt on the rising edge, on the falling edge, or on both edges of
the PWM output (or not at all).

When an underflow occurs that causes a timer reload from R1A, the interrupt pending
flag bit TIPNDA is set. Similarly, when an underflow occurs that causes a reload from
R1B, the interrupt pending flag bit TIPNDB is set. A CPU interrupt occurs if the
corresponding enable bit is set and the GIE (Global Interrupt Enable) bit is also set. The
interrupt service routine should reset the pending bit and perform whatever processing
is necessary at the interrupt point.

The following steps can be used to operate the timer in the PWM mode. In this example,
the T1A output pin is toggled with every timer underflow, and the “high” and “low” times
for the T1A output are set to different values. The T1A output can start out either high
or low; the instructions below are for starting with the T1A output high. (Follow the
instructions in parentheses to start it low.)

1. Configure the T1A pin as an output by setting bit 3 in the Port G configura-
tion register.

2. Initialize the T1A pin value to 1 (or 0) by setting (or clearing) the bit 3 in the
Port G data register.

3. Load the PWM “high” (or “low”) time into the both the timer register and the
R1B register.

4. Load the PWM “low” (or “high”) time into the R1A register.

5. Write the appropriate value to the timer control bits T1C3-T1C2-T1C1 of the
CNTRL register to select the PWM mode, and to toggle the T1A output with
every timer underflow (see Table 4-2).

6. Set the T1CO bit in the CNTRL register to start the timer.

If the user wishes to generate an interrupt on timer output transitions, reset the pending
flags and then enable the desired type(s) of interrupts using TIENA and/or TIENB. The
GIE bit must also be set. The interrupt service routine should reset the pending flag and
perform whatever processing is desired.

The selectable range for the PWM “high” and “low” times is 1 to 65,536 clock cycles. For
a 1 MHz clock, this corresponds to a time range of 1 microsecond to 65.5 milliseconds.
Thus, the pulse period (“high” plus “low” times) can range from 2 microseconds to 131
milliseconds.

4.4.2 External Event Counter Mode

The external event counter mode is similar to the PWM mode, except that instead of
counting instruction clock pulses, the timer counts transitions received on the T1A pin
(configured as an input). The T1A pin should be connected to an external device that
generates a pulse for each event to be counted.

TIMERS 4-5

The timer can be conﬁgured to sense either positive-going or negative-going transitions
on the T1A pin. The maximum frequency at which transitions can be sensed is one-half
the frequency of the instruction clock.

As with the PWM mode, when an underflow occurs, the timer register is reloaded
alternately from the R1A and R1B registers, and counting proceeds downward from the
loaded value.

Interrupt generation in the external event counter mode is different from the PWM
mode. If the T1A interrupt is enabled by TIENA, an interrupt is generated with every
underflow regardless of whether the timer register is reloaded from R1A or R1B. If the
T1B interrupt is enabled with TIENB, an interrupt is generated when a positive-going
transition is detected on the T1B pin (configured as an input).

A block diagram of the timer operating in the external event counter mode is shown in
Figure 4-2.

\ 4

16-BIT AUTO RELOAD REGISTER|«
R1A

TIMER
UNDERFLOW
INTERRUPT

A 4

T1AIZI———¢ T l 16-BIT TIMER/COUNTER |«

EDGE SELECTOR A
LOGIC

\ 4
INTERNAL BUS

16-BIT AUTO RELOAD REGISTER]| 4
R1B ~

\ 4

T B&—’ T > TO INTERRUPT CONTROL

888_timer_ex_ctr

Figure 4-2 Timer in External Event Counter Mode

The following steps can be used to operate the timer in the external event counter mode.

1. Configure the T1A and T1B pins as an inputs by clearing bits 3 and 2 in the
Port G configuration register.

2. Load the initial count into the timer register, the R1A register, and the R1B
register. When this number of external events is detected, the counter will
reach zero, however, it will not underflow until the next event is detected. To
count N pulses, load the value N-1 into the registers. If it is only necessary to

4-6 TIMERS

count the number of occurrences and no action needs to be taken at a partic-
ular count, load the value FFFF into the registers.

3. In order to generate an interrupt each time the timer underflows, clear the
T1PNDA pending flag and then enable the interrupt by setting the TIENA
bit. In order to enable interrupts on the T1B pin, clear the TIPNDB pending
flag and then set the TIENB bit. The GIE bit must also be set.

4. Write the appropriate value to the timer control bits T1C3-T1C2- T1C1 of the
CNTRL register to select the external event counter mode, and to select the
type of transition to be sensed on the T1A pin (positive-going or negative-go-
ing; see Table 4-2).

5. Set the T1CO bit in the CNTRL register to start the timer.

If interrupts are being used, the T1A interrupt service routine should clear the TIPNDA
flag and take whatever action is required when the timer underflows. If the user wishes
to merely count the number of occurrences of an event, and anticipates that the number
of events may exceed 65,536, the interrupt service routine should record the number of
underflows by incrementing a counter in memory. On each underflow, the counter/timer
register is reloaded with FFFF Hex from the R1A or R1B register for the next 65,536
occurrences.

The T1B pin and the corresponding interrupt can be used for any purpose. For example,
an external device can request the value of the current count by generating a positive
transition on the T1B pin. In that case, the T1B interrupt service routine should reset
the TIPNDB pending bit, read the timer/counter register, and complement the value to
convert a down-count from FFFF Hex into a positive count value.

4.4.3 Input Capture Mode

In the input capture mode, the T1A and T1B pins are configured as inputs. The timer
counts down at the instruction clock rate. A transition received on the T1A pin causes a
transfer of the timer contents to the R1A register. Similarly, a transition received on the
T1B pin causes a transfer of the timer contents to the R1B register. The values captured
in the R1A register at different times reflect the elapsed time between transitions on the
T1A pin. The same is true for the R1B register and R1B pin. Each input pin can be
configured to sense either positive-going or negative-going transitions.

A block diagram of the timer operating in the input capture mode is shown in Figure 4-3.

There are three interrupt events associated with the input capture mode: input capture
in R1A, input capture in R1B, and timer underflow. If interrupts are enabled, a T1A
interrupt is triggered by either an input capture in R1A or a timer underflow. A T1B
interrupt is triggered by an input capture in R1B.

In this operating mode, the T1CO control bit serves as the timer underflow interrupt
pending flag. The T1A interrupt service routine can look at this flag and the TIPNDA
flag to determine what caused the interrupt. A set T1CO flag means that a timer
underflow occurred, whereas a set TIPNDA flag means that an input capture occurred
in R1A. It is possible that both flags will be found set, meaning that both events occurred
at the same time. The interrupt routine should take this possibility into consideration.

TIMERS 4-7

:
>
A 4
INSTRUCTION
16-BIT TIMER —— CLOcK
L »INTA
A 4 (%]
2
o
-
T1A|E_,, T l —__,|16-BIT AUTO RELOAD REGISTER|« » =
R1A x
EDGE SELECTOR g
LOGIC =
L INTB
v
16-BIT AUTO RELOAD REGISTER|
mef—— 1] | « -
EDGE SELECTOR
LOGIC

888_timer_input

Figure 4-3 Timer in Input Capture Mode

Because the T1CO bit is used as the underflow interrupt pending flag, it is not available
for use as a start/stop bit as in the other modes. The timer/counter register counts down
continuously at the instruction clock rate, starting from the time that the input capture
mode is selected with bits T1C3-T1C2-T1C1. To stop the timer from running, you must
change from the input capture mode to the PWM or external event counter mode and
reset the T1CO bit.

Each of the two input pins can be independently configured to sense positive-going or
negative-going transitions, resulting in four possible input capture mode configurations.
The edge sensitivity of pin T1A is controlled by bit T1C1, and the edge sensitivity of pin
T1B is controlled by bit T1C3, as indicated in Table 4-2.

The edge sensitivity of a pin can be changed without leaving the input capture mode by
setting or clearing the appropriate control bit (T1C1 or T1C3), even while the timer is
running. This feature allows you to measure the width of a pulse received on an input
pin. For example, the T1B pin can be programmed to be sensitive to a positive-going edge.
When the positive edge is sensed, the timer contents are transferred to the R1B register,
and a T1B interrupt is generated. The T1B interrupt service routine records the contents
of the R1B register and also reprograms the input capture mode, changing the T1B pin
from positive to negative edge sensitivity. When the negative-going edge appears on the
T1B pin, another T1B interrupt is generated. The interrupt service routine reads the

4-8 TIMERS

R1B register again. The difference between the previous reading and the current reading
reflects the elapsed time between the positive edge and negative edge on the T1B input
pin, i.e., the width of the positive pulse.

The T1A pin and R1A register can be used in a similar manner, perhaps to measure the
interval between some different events. Remember that the T1A interrupt service
routine must test the T1C0 and T1PNDA flags to determine what caused the interrupt.

The software that measures elapsed time must take into account the possibility that an
underflow occurred between the first and second readings. This can be managed by using
the interrupt triggered by each underflow. The T1A interrupt service routine, after
determining that an underflow caused the interrupt, should record the occurrence of an
underflow by incrementing a counter in memory, or by some other means. The software
that calculates the elapsed time should check the status of the underflow counter and
take it into account in making the calculation.

The following steps can be used to operate the timer in the external event counter mode.

1. Configure the T1A and T1B pins as inputs by clearing bits 3 and 2 in the Port
G configuration register.

2. With the timer/counter configured to operate in the PWM or external event
counter mode (T1C2 equal to 0), reset the T1CO bit. This stops the timer reg-
ister from counting.

3. Load the initial count into the timer register, typically the value FFFF to al-
low the maximum possible number of counts before underflow.

4. Clear the TIPNDA and T1PNDB interrupt pending flags, then set the
T1ENA and T1ENB interrupt enable bits. The GIE enable bit should also be
set. The interrupts are now enabled.

5. Write the appropriate value to the timer control bits T1C3-T1C2-T1C1 of the
CNTRL register to select the input capture mode, and to select the types of
transitions to be sensed on the T1A and T'1B pins (positive-going or negative-
going; see Table 4-2). As soon as the input capture mode is enabled, the timer
starts counting.

6. When the programmed type of edge is sensed on the T1B pin, the R1B regis-
ter is loaded and a T1B interrupt is triggered. The interrupt service routine
resets the T1PNDB pending bit and performs the required task such as re-
cording the R1B register contents.

7. When the programmed type of edge is sensed on the T1A pin, the R1A regis-
ter is loaded and a T1A interrupt is triggered. A T1A interrupt is also trig-
gered when an underflow occurs in the timer register. The interrupt service
routine tests both the TIPNDA and T1CO0 flags to determine the cause of the
interrupt, resets the pending bit, and performs the required task, such as re-
cording the R1A register contents or incrementing an underflow counter.

TIMERS 4-9

4.5 ADDITIONAL GENERAL-PURPOSE TIMERS

Some COP888 devices have additional timers that operate in exactly the same manner
as the T1 timer. Additional timers of this type are designated T2, T3, and so on. The
device-specific chapters indicate the number of timers available in each device.

Like the T1 timer, each additional timer has its own set of three 16- bit memory-mapped
registers and two I/O pins that are alternate functions of port pins. The eight control bits
for each additional timer are grouped together into a single memory-mapped control
byte, rather than being distributed between the PSW, CNTRL, and ICNTRL registers as
in the case of Timer T1.

The register addresses and other information for the basic timer T1 and additional
timers T2 and T3 are listed below.

Timer T1
T1: Address 00EA-00EB
R1A: Address 00EC-00ED
R1B: Address 00E6-00E7

Control bits in CNTRL, PSW, ICNTRL:

T1C3-T1C2-T1C1-T1CO0:

Addresses 00EE, 00EF, 00E8

CNTRL bits 7-6-5-4

T1PNDA-T1ENA: PSW bits 5-4
T1PNDB-T1ENB: ICNTRL bits 1-0

T1A pin: Alternate function of G3
T1B pin: Alternate function of G2

Timer T2 (If present)

T2: Address 00C0-00C1
R1A: Address 00C2-00C3
R1B: Address 00C4-00C5
Control bits in T2CNTRL: Address 00C6

T2C3-T2C2-T2C1-T2C0:

T2CNTRL bits 7-6-5-4

T2PNDA-T2ENA: T2CNTRL bits 3-2
T2PNDB-T2ENB: T2CNTRL bits 1-0
T2A pin: Alternate function of L4
T2B pin: Alternate function of L5

Timer T3 (If present)

T3: Address 00B0-00B1
R1A: Address 00B2-00B3
R1B: Address 00B4-00B5
Control bits in TSCNTRL: Address 00B6

T3C3-T3C2-T3C1-T3C0:

T3CNTRL bits 7-6-5-4

T3PNDA-T3ENA: T3CNTRL bits 3-2
T3PNDB-T3ENB: T3CNTRL bits 1-0
T3A pin: Alternate function of L6
T3B pin: Alternate function of L7

TIMERS

4.6 IDLE TIMER

Many COP888 devices have a special-purpose timer called the IDLE Timer, also known
as Timer TO to distinguish it from the general-purpose timers T1, T2, etc. The IDLE
timer, if present, can be used for the following purposes:

* Timing the duration of the IDLE mode
* Timing a start-up delay when exiting the HALT mode (under certain conditions)
* Timing the Watchdog service window (if present)

The IDLE Timer uses a 16-bit count-down timer register. It runs continuously at the
instruction clock rate whenever the device is operating, including during the IDLE mode.
(The instruction clock runs at one-tenth the frequency of the chip clock.) The timer
register is not memory mapped, so it cannot be read or written by the software, and it
cannot be stopped from running. Its contents upon Reset are unknown. The state of the
timer can be determined only by using the IDLE Timer interrupt or by polling the
interrupt pending bit, described below.

Figure 4-4 is a functional block diagram showing the structure of the IDLE Timer and its
associated interrupt logic.

WATCHDOG LOGIC

r

0 15 12-15

tC ——» DOWN COUNTER (T0)

IDLE (TO OSC CKT) :>_. INTERRUPT
T 7 6 5 4 F 0

G6 DATA I I |ToPND| TOEN |[....... [le—
REGISTER BIT ICNTRL REGISTER
1
MULTI-INPUT
LOGIC

INTERNAL DATA BUS

888_timer_idle_blk

Figure 4-4 IDLE Timer (Timer T0) Block Diagram

TIMERS 4-11

Bit 12 of the timer register is used for triggering the IDLE Timer interrupt. Each time
bit 12 toggles (every 4,096 instruction cycles), the IDLE Timer interrupt pending bit
TOPND is set, thus generating an interrupt (if enabled), and bit 6 of the Port G data
register is reset, thus causing an exit from the IDLE mode if the device is in that mode.

In order for an interrupt to be generated, the IDLE Timer interrupt enable bit TOEN
must be set, and the GIE (Global Interrupt Enable) bit must also be set. The TOPND flag
and TOEN bit are bits 5 and 4 of the ICNTRL register, respectively. The interrupt can be
used for any purpose. Typically, it is used to perform a task upon exit from the IDLE
mode. For more information on the IDLE mode, see Chapter 6.

The higher-order bits of the IDLE timer are used only by the Watchdog circuit (if
present). The timer count establishes a “time window” in which the software must
periodically write a specific value to the Watchdog service register. The Watchdog feature
is described in Chapter 8.

Under certain conditions, a start-up delay is used when exiting the HALT mode, which
allows the clock to reach the proper amplitude and operating frequency before program
execution resumes. If a start-up delay is used, the chip hardware loads the IDLE timer
register with the value 256 upon exit from the HALT mode. Program execution is delayed
until the counter counts down to zero. For more information on this feature, see
Chapter 6.

4-12 TIMERS

Chapter 5

MICROWIRE/PLUS

5.1 INTRODUCTION

MICROWIRE/PLUS is a synchronous serial communication system that allows the
COP888 microcontroller to communicate with any other device that also supports the
MICROWIRE/PLUS system. Examples of such devices include A/D converters,
comparators, EEPROMs, display drivers, telecommunications devices, and other
processors (e.g., HPC and COP400 processors). The MICROWIRE/PLUS serial interface
uses a simple and economical 3-wire connection between devices.

Several MICROWIRE/PLUS devices can be connected to the same 3-wire system. One of
these devices, operating in what is called the master mode, supplies the synchronous
clock for the serial interface and initiates data transfers. Another device, operating in
what is called the slave mode, responds by sending (or receiving) the requested data. The
slave device uses the master’s clock for serially shifting data out (or in), while the master
device shifts the data in (or out).

On the COP888 device, the three interface signals are called SI (Serial Input), SO (Serial
Output), and SK (Serial Clock). To the master, SO and SK are outputs (connected to slave
inputs), and SI is an input (connected to slave outputs).

The COPS888 can operate either as a master or a slave, depending on how it is configured
by the software. Figure 5-1 shows an example of how several devices can be connected
together using the MICROWIRE/PLUS system, with the COP888 on the left operating
as the master, and other devices operating as slaves. The protocol for selecting and
enabling slave devices is determined by the system designer.

5 CHIP SELECT LINES
o) 8-BIT LCD o)
LINES]| A/D CON- 1024-BIT DIGITAL DISPLAY LINES
VERTER EEPROM DRIVER
coP8 DS8907 3 COP8
<:> e COP 43X coparz | | SOFe C>
]
po DI ck| | po br cik DI CLK DI CLK
si v v so
so si
SK SK

DD11208-23
cop8_uwirep

Figure 5-1 MICROWIRE/PLUS Example

MICROWIRE/PLUS 5-1

5.2 THEORY OF OPERATION

Figure 5-2 is a block diagram illustrating the internal operation of the MICROWIRE/
PLUS circuit of the COP888.

BUSY
FLAG

.

v

INTERRUPT

> SO
L MSB LSB

SIO REGISTER si
[———— (8 BITS)

t SHIFT CLOCK

INSTRUCTION DIVIDE-BY CLOCK
CLOCK ~*| CcounTER [seLecTt [> SK

wcw >»-H>»0

¢————p| CNTRL
REGISTER

888_uwire_blk

Figure 5-2 MICROWIRE/PLUS Circuit Block Diagram

An 8-bit shift register, called the SIO (Serial Input/Output) register, is used for both
sending and receiving data. In either type of data transfer, bits are shifted left through
the register. When a data byte is being sent, bits are shifted out through the SO output,
most significant bit first. When a data byte is being received, bits are shifted in through
the SI input, most significant bit first also.

The SIO register is memory-mapped in the microcontroller’s data memory space,
allowing the software to write a data byte to be sent, or to read a full data byte that has
been received. The Busy flag in the PSW register indicates whether the SIO register is
ready to be read or written. Interrupts or polling can be used to synchronize the reading
or writing of the SIO register to completion of each 8-bit shift operation, or a carefully
timed software loop can be programmed for this purpose.

The software should write the SIO register only when the SK clock is low. A data byte is
generally written at the end of an 8-bit shifting cycle, when the SK clock is low anyway.
If the software inadvertently writes to the register when SK is high, unknown data may
be placed in the register.

5.2.1 Timing

The SK clock signal is generated by the master device. The timing of the MICROWIRE/
PLUS interface is synchronized to this signal.

There are two operating modes for the interface, called the standard SK mode and the
alternate SK mode. In the standard SK mode, output data on SO is clocked out on the
falling edge of the SK clock, and input data on SI is sampled on the rising edge of the SK

5-2 MICROWIRE/PLUS

clock. In the alternate SK mode, the SK clock edge functions are reversed: output data
on SO is clocked out on the rising edge of the SK clock, and the input data on SI is
sampled on the falling edge of the SK clock.

The timing for SK, SO, and SI interface signals is shown in Figure 5-3 for the standard
SK mode, and in Figure 5-4 for the alternate SK mode. The solid arrows indicate the SK
clock edges that cause the output data to be clocked out on the SO pin, and the dotted
arrows indicate the clock edges that cause the input data on the SI pin to be sampled. In
either mode, shifting occurs in the SIO register on the falling edge of the SK clock.

SK

[Bit7 Out Bit0 \/Bit7 out
so (MSB) BltG>< Bit 5: >< Bit 4 >< Bit 3: >< Bit 2 >< Bit 1 >< LSB_) (MSB)

[Bit7In Bio Bit 7 In
Si (MSB) >< BI16>< Bit 5 ><Blt4 >< Bit 3 >< Bit 2 X Bit 1 (LSB) (MSB)

888_uwire_tim_std

Figure 5-3 MICROWIRE/PLUS Interface Timing, Standard SK Mode

>< Bit6 >< Bit 5 >< Bit 4 >< Bit3 >< Bit2 >< Bit1) (tsh)
>< Bit6 >< g.t5>< Bit 4 >< Bit3 >< Bit 2 >< Bit 1 >< (,_"S%)

888_uwirep_tim_alt

Figure 5-4 MICROWIRE/PLUS Interface Timing, Alternate SK Mode

SK

SO

Si

In the standard SK mode, the most significant bit becomes valid immediately after the
SIO register of the transmitting device is loaded. Thus, the data is clocked into the
receiving device on the initial rising edge of the SK clock. In the alternate SK mode, the
most significant bit is clocked out on the initial rising edge of the SK clock, and then
clocked into the receiving device on the falling edge of that same clock pulse. The choice
of which mode to use depends on the implementation of the MICROWIRE/PLUS
protocol.

The SK clock mode is determined by the SKSEL bit (bit 6) in the Port G configuration
register. Upon reset, this bit is reset to 0, resulting in the standard SK mode. The

MICROWIRE/PLUS 5-3

software can change the operation of the COP888 to the alternate SK mode by setting the
SKSEL bit.

5.2.2

The three MICROWIRE/PLUS signals SO, SK, and SI are alternate functions of Port G
pins G4, G5, and G6, respectively. To enable the use of these pins for the MICROWIRE/
PLUS interface, the MSEL (MICROWIRE Select) bit of the CNTRL register must be set
to 1. (The SL1 and SLO bits, also in the CNTRL register, are used to control the SK clock
speed in master mode, as described below.)

Port G Configuration

Port G must be properly configured for operation of the interface. This is accomplished
by writing certain bit values to the Port G configuration register. Pin G4 (SO) should be
configured as an output for sending data. It can be placed in the TRI-STATE (high-
impedance) mode for receiving data, thereby preventing unknown data from being placed
on the SO output pin. Pin G5 (SK) should be configured as an output in master mode, or
as an input in slave mode. G6 (SI) serves only as an input, so it need not be specifically
configured as such. The Port G configuration register programming options are
summarized in Table 5-1.

Table 5-1 Port G Configuration Register Bits

Port G Config. | MICROWIRE G4 Pin G5 Pin G6 Pin
Reg. Bits G5-G4 Operation Function | Function | Function
0-0 Slave, data in TRI-STATE | SK Input | SIInput
(unused)
0-1 Slave, data out | SO Output | SK Input | SI Input
and data in
1-0 Master, datain | TRI-STATE | SK Output | SI Input
(unused)
1-1 Master, dataout | SO Output | SK Output | SI Input
and data in
5.2.3 SK Clock Frequency

When the COP888 operates in master mode, it generates the SK clock signal. A divide-
by counter lowers the frequency of the instruction clock, producing an SK clock period
that is 2, 4, or 8 times the period of the instruction clock. The divide-by factor is
programmed by writing two bits to the CNTRL register, designated SL1 and SLO (Select
1 and Select 0 bits), as indicated in Table 5-2.

The internal divide-by counter is reset when the MICROWIRE Busy flag (described
below) goes to 1. Because of this, the divide-by counter always starts from 0 at the
beginning of an 8-bit shift cycle, ensuring uniform SK clock pulses.

5-4 MICROWIRE/PLUS

Table 5-2 Master Mode Clock Select Bits

SL1 (CNTRL Bit 1) | SLO (CNTRL Bit 0) SK Clock Period
0 0 2 times instruction clock period
0 1 4 times instruction clock period
1 - X 8 times instruction clock period

When the COP888 microcontroller operates in slave mode, the SK clock is generated by
the external master device. In this case, SK is an input, and the SK clock-generating
circuit of the COP888 is inactive.

5.2.4 Busy Flag and Interrupt

A flag bit in the PSW (Processor Status Word) register indicates the status of the SIO
shift register. To initiate an 8-bit shifting operation, the software sets this bit to 1.
Shifting then starts and continues automatically at the SK clock rate. With each shift,
the high-order bit of the register is shifted out on SO (if enabled), and simultaneously, the
low-order bit of the register is shifted in from SI.

When the 8-bit shifting operation is finished, the Busy flag is automatically reset to 0 by
the hardware, and a MICROWIRE/PLUS interrupt is generated (if enabled). When this
occurs, the software should write the next byte to be sent (and/or read the full byte just
received) and then set the Busy flag to initiate transfer of the next byte. Either polling or
interrupts can be used to determine when this needs to be done.

If polling is used, the CPU runs in a continuous loop in which the status of the Busy flag
is read. When the flag is found to be 0, the software reads or writes the SIO register, sets
the Busy flag for the next transfer, and then returns to the polling loop.

If interrupts are used, the CPU can perform other tasks while the data byte is being
shifted in or out of the SIO register. The MICROWIRE interrupt service routine resets
the MICROWIRE pending flag (WWPND), reads or writes the SIO register, sets the Busy
flag to one for the next transfer, and then returns from the interrupt. To enable the
MICROWIRE interrupt, set the uWEN (MICROWIRE interrupt enable) bit. The GIE
(Global Interrupt Enable) bit must also be set. The uWPND flag and uWEN enable bit
are bits 3 and 2 of the ICNTRL register, respectively.

The software can control the timing of the transfer by setting and clearing the Busy flag
directly. If the Busy bit is cleared directly by the software, shifting stops immediately. In
this case an interrupt is not generated.

The handshaking protocol between the master and slave should ensure that the slave
device is given enough time to respond after being enabled by the master. An example of
a MICROWIRE/PLUS master/slave protocol is provided in the applications chapter.

It is possible to eliminate the need for polling or interrupts, thereby speeding up the
transfer. This is accomplished by writing a software loop that executes in the exact
amount of time necessary to allow an 8-bit shift operation. At the end of the loop, the

MICROWIRE/PLUS 5-5

software initiates the next 8-bit transfer immediately, without checking the Busy bit.
This is called the MICROWIRE “fast burst” mode. An example of this type of program is
presented in the applications chapter.

Some external devices may require a continuous bit stream, without any pauses between
bytes. This mode, called the MICROWIRE “continuous” mode, is also accomplished by
writing a software loop that executes in a specific number of cycles. The clock divide-by
factor must be 8. An example of this type of program is presented in the applications
chapter.

When the COP888 operates in slave mode, the Busy flag should be set only when the SK
clock signal (an input) is low. This is because the Busy bit is ANDed internally with the
SK signal to produce the clock-shifting signal. If the Busy flag is set while SK is already
high, the current SK pulse is gated-in immediately, resulting in a clock pulse with an
unknown width (perhaps very narrow), causing unreliable shifting.

5.3 MASTER MODE OPERATION EXAMPLE

When the COP888 operates in master mode, it generates the SK clock and initiates the
transfer. The application software can perform a data transfer using the numbered steps
shown below.

1. Write the proper value to the CNTRL register. To enable use of the Port G
pins, set the MSEL bit. To set the divide-by factor for the SK clock, write the
desired 2-bit value to the SL1 and SLO bits (Table 5-2).

2. Write the proper value to the Port G configuration register, bits G5 and G4,
to make the G5 (SK) pin an output and the G4 (SO) pin either TRI-STATE or
an output, depending on whether the COP888 is transmitting (Table 5-1).
Write the proper value to the Port G configuration register bit 6 to select the
Standard or Alternate SK Clocking mode.

3. If necessary, enable the desired slave device.
4. If sending data, write the data byte to the SIO register.

5. Set the Busy flag in the PSW register to initiate the transfer. Shifting pro-
ceeds automatically at the SK clock rate. The Busy flag is automatically reset
upon completion of the 8-bit transfer.

6. Run in a loop and test the Busy flag for completion of the 8-bit transfer.
7. Ifreceiving data, read the data byte in the SIO register.
8. Repeat steps 4 through 7 until all data bytes are transferred.

Polling is used in the example above. If interrupts are to be used instead, the software
should reset the uWPND pending flag and set the uWEN enable bit at the beginning. The
GIE bit must also be set. The MICROWIRE interrupt service routine should be
programmed to reset the pending flag, read or write the SIO register, and set the Busy
flag to initiate the next transfer, thus replacing steps 4 through 8 above.

5-6 MICROWIRE/PLUS

54 SLAVE MODE OPERATION EXAMPLE

When the COP888 operates in slave mode, the external master device generates the SK
clock and initiates the transfer; SK is an input to the COP888. The application software
can set up the COP888 device to allow a data transfer using the numbered steps shown

below.

5.
6.
7.

To enable use of the Port G pins, set the MSEL bit of the CNTRL register.

Write the proper value to the Port G configuration register to make the G5
(SK) pin an input and the G4 (SO) pin either TRI-STATE or an output, de-
pending on whether the COP888 is transmitting (Table 5-1). Write the proper
value to the Port G configuration register bit 6 to select the Standard or Al-
ternate SK Clocking mode.

If sending data, write the data byte to the SIO register.

Set the Busy flag in the PSW register to allow the transfer. This should be
done only when the SK signal is low. The handshaking protocol between the
master and slave should ensure that the COP888 is given enough time to set
the Busy flag before the data transfer starts. Once started, shifting proceeds
at the SK clock rate. The Busy flag is automatically reset upon completion of
the 8-bit transfer.

Run in a loop and test the Busy flag for completion of the 8-bit transfer.
If receiving data, read the data byte in the SIO register.
Repeat steps 3 through 6 until all data bytes are transferred.

Again, polling is used in the example above. Interrupts can be used instead as described
under the master mode example.

MICROWIRE/PLUS 5-7

Chapter 6

POWER SAVE MODES

6.1 INTRODUCTION

The COP888 supports a power-save mode of operation called the HALT mode. In this
mode of operation, all processor activity stops and power consumption is reduced to a
very low level. The processor can be forced to exit the HALT mode and resume normal
operation at any time. The HALT feature is a mask option.

The fully static architecture of the COP888 allows the state of the microcontroller to be
frozen. This is accomplished by stopping the internal clock of the device during the HALT
mode. If an R-C or crystal type clock is used, the controller also stops the CKI pin from
oscillating during the HALT mode.

During normal operation, typical power consumption is in the range of 1 to 10 milliamps.
The actual power consumption depends heavily on the clock speed and operating voltage
used in an application. In the HALT mode, the device only draws a small leakage current,
plus any current necessary for driving the outputs. Typically, power consumption is
reduced to less than 1 microamp. Since total power consumption is affected by the
amount of current required to drive the outputs, all I/Os should be configured to draw
minimal current prior to entering the HALT mode, if possible. In order to reduce power
consumption even further, the power supply (Vo) can be reduced to a very low level
during the HALT mode, just high enough to guarantee retention of data stored in RAM.
The allowed lower voltage level (Vr) is specified in the device data sheet.

Some COP888 devices also support another power-save mode called the IDLE mode. The
IDLE mode is similar to the HALT mode, except that certain sections of the device
continue to operate, allowing real time to be maintained: the on-board oscillator, the
IDLE Timer (Timer TO0), and the Clock Monitor. The device-specific chapters indicate
whether the IDLE mode is available.

6.2 ENTERING THE HALT MODE

There are two ways to enter the HALT mode. One method is to simply stop the processor
clock (if the hardware implementation allows it). The other method is to set bit 7 of the
Port G data register.

6.2.1 Clock-Stopping Method

The clock-stopping method of entering the HALT mode can be used only if the hardware
implementation of the processor clock allows it. If an R-C circuit or crystal is connected
between the CKI and CKO inputs of the device, there is no practical way to stop the clock,
and this method cannot be used. However, if the clock signal is generated externally and
supplied to the CKI input, the external clock circuit can simply stop the clock at any time.

POWER SAVE MODES 6-1

The clock signal at CKI should be stopped in the low state. When the clock stops, the
COP888 stops running but maintains all register and RAM contents. Power consumption
is reduced to a very low level. When the clock starts running again, the processor begins
running again from the point at which it was stopped.

6.2.2 Port G Method

Using the Port G method, the device enters the HALT mode under software control when
the Port G data register bit 7 is set to 1. All processor action stops immediately, and power
consumption is reduced to a very low level.

6.3 EXITING THE HALT MODE

If the HALT mode was entered by stopping the processor clock, it is exited by re-starting
the clock. The processor begins running again from the point at which it was stopped.

If the HALT mode was entered by setting bit 7 of the Port G data register, there is a choice
of methods for exiting the HALT mode: a chip Reset using the RESET pin, a Multi-Input
Wakeup or a low-to-high transition on the G7 pin of Port G. The Reset method can be
used with any COP888 device, but the availability of the other two methods depends on
the specific device type.

6.3.1 HALT Exit Using Reset

A device Reset, which is invoked by a low-level signal on the RESET input pin, takes the
device out of the HALT mode and starts execution from address 0000H. The initialization
software should determine what special action is needed, if any, upon start-up of the
device. The initialization of all registers following a RESET exit from HALT is described
in Section 2.6 and in the device-specific chapters.

6.3.2 HALT Exit Using Multi-Input Wakeup

In devices having the Multi-Input Wakeup/Interrupt feature, the device can be brought
out of the HALT mode by a transition received on one of the available Wakeup pins. The
pins used and the types of transitions sensed on the port pins are software
programmable. For information on programming and using the Multi-Input Wakeup
feature, see the description of Multi-Input Wakeup in Chapter 7.

A start-up delay may be required between the device wakeup and the execution of
program instructions, depending on the type of chip clock. If a single-pin clock is used
(R-C or external clock signal), the start-up delay is optional. It can be invoked under
software control by setting the CLKDLY bit, which is bit 7 of the Port G configuration
register. (Upon Reset, this bit is cleared, resulting in no start-up delay.)

If a two-pin, closed-loop crystal oscillator is used, the start-up delay is mandatory, and is
implemented whether or not the CLKDLY bit is set. This is because all crystal oscillators
and resonators require some time to reach a stable frequency and full operating
amplitude. In this case, the CLKDLY flag can be used by the software for any purpose.

6-2 POWER SAVE MODES

If the start-up delay is used, the IDLE Timer (Timer T0) provides a fixed delay from the
time the clock is enabled to the time the program execution begins. Upon exit from the
HALT mode, the IDLE Timer is enabled with a starting value of 256 and is decremented
with each instruction cycle. (The instruction clock runs at one-tenth the frequency of the
oscillator clock.) An internal Schmitt trigger connected to the on-chip CKI inverter
ensures that the IDLE Timer is clocked only when the oscillator has a large enough
amplitude. (The Schmitt trigger is not part of the oscillator closed loop.) When the IDLE
Timer underflows, the clock signals are enabled on the chip, allowing program execution
to proceed. Thus, the delay is equal to 256 instruction cycles.

To ensure accurate operation on start-up of the device using Multi-Input Wakeup, the
instruction in the application program used for entering the HALT mode should be
followed by two consecutive NOP (no-operation) instructions.

6.3.3 HALT Exit Using G7 Pin

Using the G7 input pin is possible only if an external clock signal is supplied to CKI or
an R-C circuit is being used. If a crystal is being used, the G7/CKO pin is used as CKO,
and is therefore unavailable for use as the HALT/Restart pin.

If the G7 pin is available, a low-to-high transition on the pin takes the processor out of
the HALT mode, and program execution resumes from the point at which it stopped. To
ensure accurate operation upon start-up of the device using the G7 pin, the instruction
in the application program used for entering the HALT mode should be followed by two
consecutive NOP (no-operation) instructions.

64 IDLE MODE

Some COP888 devices support another power-save mode called the IDLE mode. The
device-specific chapters indicate whether the IDLE mode is available. In the IDLE mode,
program execution stops and power consumption is reduced to a very low level as with
the HALT mode. However, the on-board oscillator, IDLE Timer (Timer T0), and Clock
Monitor continue to operate, allowing real time to be maintained. The device remains
idle for up to 4,096 instruction cycles, or 4.096 milliseconds with a 1 MHz instruction
clock frequency, and then automatically exits the IDLE mode and returns to normal
program execution.

The device is placed in the IDLE mode under software control by setting the IDLE bit (bit
6 of the Port G configuration register).

The IDLE mode uses the on-chip IDLE Timer (Timer T0) to keep track of elapsed time in
the IDLE state. The IDLE Timer runs continuously at the instruction clock rate, whether
or not the device is in the IDLE mode. Each time bit 12 of the timer toggles (every 4,096
instruction cycles), the TOPND bit is set, an interrupt is generated (if enabled), and the
device exits the IDLE mode if in that mode. If the IDLE timer interrupt is enabled, the
interrupt is serviced before execution of the main program resumes.

The IDLE timer cannot be started or stopped under software control, and it is not
memory mapped, so it cannot be read or written by the software. Its state upon Reset is

POWER SAVE MODES 6-3

unknown. Therefore, if the device is put into the IDLE mode at an arbitrary time, it will
stay in the IDLE mode for somewhere between 1 and 4,096 instruction cycles.

In order to precisely time the duration of the IDLE state, entry into the IDLE mode must
be synchronized to the state of the IDLE Timer. The best way to do this is to use the IDLE
Timer interrupt, which occurs on every toggle of bit 12 of the IDLE Timer. Another
method is to poll the state of the IDLE Timer pending bit TOPND, which is set on the
same occurrence.

For more information on the IDLE Timer and its associated interrupt, see the description
in Chapter 4.

6.5 HALT/IDLE AND WATCHDOG OPERATION

Some COP888 family members have a Watchdog and Clock Monitor circuit, which
requires the software to perform a specific action periodically within a specified time
window. The Watchdog feature is described fully in Chapter 8 of this manual.

Operation of the Watchdog is inhibited during the HALT mode. If a single-pin clock is
used and the start-up delay has not been enabled, the Watchdog circuit resumes normal
operation upon exit from the HALT mode, as if the HALT had not occurred.

If the start-up delay is used, then the IDLE counter is reset at the end of the start-up
delay and an IDLE counter interrupt is generated (if enabled). The Watchdog count,
which also uses the IDLE timer, is re-started using the previously programmed
Watchdog and Clock Monitor settings. Upon resuming operation with the start-up delay,
the software should reset the IDLE counter interrupt pending flag (TOPND).

Operation of the Watchdog is also inhibited by the IDLE mode. As in the case of the start-
up delay with the HALT mode, the Watchdog count is re-started using the previously
programmed Watchdog and Clock Monitor settings.

The software should take into account the re-starting of the Watchdog count upon exit
from the HALT mode (with a start-up delay) or IDLE mode. Otherwise, the program
could perform its Watchdog servicing routine too early, triggering a Watchdog error.

6.6 NMI EXIT FROM HALT/IDLE

Some COPS888 devices have an NMI (non-maskable interrupt) pin. A low-to-high
transition on this pin triggers a non-maskable interrupt. If the device is in the HALT or
IDLE mode, the NMI brings the device out of that mode. After the NMI interrupt is
serviced, normal execution resumes with the instruction following the instruction that
placed the device in the HALT or IDLE mode.

6-4 POWER SAVE MODES

Chapter 7

INPUT/OUTPUT

7.1 INTRODUCTION

All COP888 family devices have at least four dedicated input pins (RESET, V¢, GND,
CKI) and at least one 8-bit I/O port, designated Port G. Additional bidirectional I/O ports,
dedicated input ports, and/or dedicated output ports are available on all deices. Refer to
the device-specific chapters for information on available ports, packages, and pinouts.

Figure 7-1 is a block diagram illustrating the general structure of bidirectional,
dedicated input, and dedicated output pins. A bidirectional I/O pin can be configured by
the software to operate as a high-impedance input, an input with a weak pull-up, or as a
push-pull output. The operating state is determined by the contents of the corresponding
bits in the data register and configuration register. Each bidirectional I/O pin can be used
for general-purpose I/O, or in some cases, for a specific alternate function determined by
the on-chip hardware. Similarly, a dedicated input pin or dedicated output pin can be
used for general-purpose input or output, or for a specific alternate function. (The
internal interfaces to alternate functions are not shown in the Figure 7-1.)

BIDIRECTIONAL 1/O PORT
PIN
DATA T
REGISTER
|
N
T CONFIGURATION
REGISTER
E
R
N
A
L
OUTPUT-ONLY PORT PIN
B DATA
U REGISTER
PIN
INPUT-ONLY PORT
cop8_ioport

Figure 7-1 COP888 Port Structure

INPUT/OUTPUT 7-1

The following sections of this chapter describe each of the individual ports used in
COP888 devices. In general, each port contains eight bits. There is usually a memory-
mapped data register associated with each port that holds the bit values for the port pins.
For bidirectional pins, there is also a configuration register, that specifies whether an I/
O pin operates as an input or as an output. Use of the data and configuration registers is
described in Section 2.3.3. In some cases, a third memory location is available for reading
the state of the port pins directly.

Many pins can be used either for general-purpose I/O or for a specific alternate function.
Alternate functions vary from one COP888 device to another, so these functions are
described in the device-specific chapters.

Note that not all ports are available in all devices.

72 PORTC

Port C is a general-purpose, bidirectional I/O port. There are three memory locations
associated with this port: one each for the data register, for the configuration register,
and for reading the port pins directly.

Any device package that has a Port C, but has fewer than eight Port C pins, contains
unbonded, floating pads internally on the chip. For these types of devices, the software
should write a 1 to the configuration register bits corresponding to the non-existent port pins.
This configures the port bits as outputs, thereby reducing leakage current of the device.

7.3 PORTD

Port D is a general-purpose, dedicated output port. There is one memory location
associated with this port, which is used for accessing the port data register. Port D output
pins can be individually set to a logic high or low by writing a one or zero, respectively, to
the associated data register bits.

Port D output pins have high-sink drive capability. Refer to the COP888 data sheets for
information on the electrical specifications.

Port D is preset high when the RESET signal goes active (low). If the D2 pin is held low
by the external circuit during the Reset state, the microcontroller enters a special mode
of operation upon exiting the Reset state. This special mode is used for testing purposes.
To avoid entering this mode, the hardware design should ensure that D2 is not pulled low
during a Reset operation.

7-2 INPUT/OUTPUT

74 PORTG

Port G is a bidirectional I/O port that is present in all COP888 devices. The number of
pins available in this port depends on the device type and package. There are three
memory locations associated with this port: one each for the data register, for the
configuration register, and for reading the port pins directly. All Port G pins have Schmitt
triggers on their inputs.

Pins GO, G2, G3, G4, and G5 are general-purpose I/O pins, that support alternate
functions such as the timer interface control, external interrupt, and MICROWIRE/
PLUS interface. The alternate pin functions are listed in Section 7.7, and described in
detail in the chapters devoted to specific COP888 features. For general purposes, these
pins are programmed as described in Section 2.3.3.

Pin G1 serves as a dedicated output, WDOUT, if the device has a Watchdog and Clock
Monitor. Pin G6, if present, is a dedicated input pin. Pin G7 is either a dedicated input
or dedicated output, depending on the oscillator mask option selected. With the R-C
oscillator or external clock mask option, G7 can be used as a general-purpose input pin,
or as the HALT/Restart input pin as described in Chapter 6. With the crystal oscillator
mask option, G7 is the clock output pin, CKO.

7.5 PORTI

Port I is a dedicated input port. The Port I pins are used for general input or for alternate
functions such as inputs to a comparator or A/D converter. There is one memory location
associated with this port, which is a read-only address used for reading the pin values
directly. All Port I pins are high- impedance inputs, that must be pulled to a logic high or
low by the external hardware.

Any device package that has a Port I, but has fewer than eight Port I pins, contains
unbonded, floating pads internally on the chip. The binary value read from these bits is
undetermined. The application software should mask out these unknown bits when
reading the Port I register, or use only bit-access program instructions when reading Port
I. The unconnected bits draw power only when they are addressed (i.e., in brief spikes).

7.6 PORTL

Port L is a bidirectional I/O port that can be used for general-purpose I/O or for alternate
functions such as Multi-Input Wakeup/Interrupt and/or timer I/O. The number of pins
available in this port depends on the device type and package. There are three memory
locations associated with this port: one each for the data register, for the configuration
register, and for reading the port pins directly.

In devices that support the Multi-Input Wakeup/Interrupt feature, the Port L inputs
have Schmitt triggers. Refer to the COP888 data sheets for information on the electrical
specifications.

INPUT/OUTPUT 7-3

7.7 ALTERNATE FUNCTIONS

Many general-purpose I/O pins have alternate functions. The software can program each
I/O pin to be used either for general-purpose or for a specific alternate function. The chip
hardware determines which of the I/O pins have alternate functions. Alternate functions
vary from one COP888 device type to another, and from one package type to another.

Port G is present in all COP888 devices. The alternate functions of this port are described
below. The Multi-Input Wakeup/Interrupt feature, an alternate function of some ports, is
also described below. This feature can be used for waking up from (exiting) the HALT or
IDLE mode, and also for providing an additional eight maskable interrupts. For
information on the alternate functions of other ports, refer to the device-specific chapters
and the chapters describing individual COP888 features.

7.7.1 Port G Alternate Functions
The pins of Port G have the alternate functions listed below.
GO0 INTR (External Interrupt Input)
G1 Watchdog Output (on some COP888 devices)
G2 Ti1B (Timer T1B input)
G3 T1A (Timer T1A input/output)
G4 SO (MICROWIRE Serial Output)
G5 SK(MICROWIRE Serial Clock)
G6 SI(MICROWIRE Serial Input)
G7 If crystal oscillator mask option: Dedicated CKO (Clock Output)
If R-C/ external oscillator mask option: HALT/Restart input

For more information on interrupts, timers, MICROWIRE/PLUS, and HALT mode, see
the separate chapters covering these subjects.

7.7.2 Multi-Input Wakeup/Interrupt

The Multi-Input Wakeup/Interrupt feature is an alternate function of some COP888
ports. This feature can be used for either of two purposes: to provide separate inputs for
waking up (exiting) from the HALT or IDLE mode, or to provide separate edge-triggered
maskable interrupts. Figure 7-2 is a block diagram showing the internal logic of the
Multi-Input Wakeup/Interrupt circuit.

There are three memory-mapped registers associated with this circuit: WKEDG
(Wakeup Edge), WKEN (Wakeup Enable), and WKPND (Wakeup Pending). Each
register has eight bits, with each bit corresponding to one of the eight input pins shown
in Figure 7-2. All three registers are initialized to zero with a Reset.

The WKEDG register establishes the edge sensitivity for each of the port input pins:
either positive-going edges (0) or negative-going edges (1).

7-4 INPUT/OUTPUT

| INTERNAL DATA BUS

7 | ... 0 G7 G6
| l j l DATA BIT DATA BIT
WKEN
CKI CKO ‘IDLE
L l T HALT
Lo { I o | 0sC E i
L 1 j — CKT [
HALT
WAKEUP l OR IDLE
’ \
: : ‘ IDLE S R
: : —> TIMER Q
T)
WKEDG WKPND |
LPEN
BIT
ICNTRL REG
TO INTERRUPT LOGIC CHIP CLOCK

888_intr_logic

Figure 7-2 Multi-Input Wakeup/Interrupt Logic

The WKEN register enables (1) or disables (0) each of the port pins for the Wakeup/
Interrupt function. Any pin that is to used for the Wakeup/Interrupt function must also
be configured as an input pin in its associated configuration register.

PN |

The WKPND register contains the pending flags corresponding to each of the port pins
(1 for wakeup/interrupt pending, 0 for wakeup/interrupt not pending).

To use the Multi-Input Wakeup/Interrupt circuit, perform the steps listed below.
Performing the steps in the order shown will prevent false triggering of a Wakeup/
Interrupt condition. This same procedure should be used following a Reset because the

Wakeup inputs are left floating as a result of a Reset, resulting in unknown data on the
Port L inputs.

1. If necessary, write to the port configuration register to change the desired
port pins from outputs to inputs.

2. Write the WKEDG register to select the desired type of edge sensitivity for
each of the pins used.

3. Clear the WKPND register to cancel any pending bits.

4. Set the WKEN bits associated with the pins to be used, thus enabling those
pins for the Wakeup/Interrupt function.

INPUT/OUTPUT 7-5

Once the Multi-Input Wakeup/Interrupt function has been set up, a transition sensed on
any of the enabled pins will set the corresponding bit in the WKPND register. This brings
the device out of the HALT or IDLE mode (if in that mode), and also triggers a port
maskable interrupt if that interrupt is enabled. To enable the port interrupt, set the
enable bit in the appropriate control register (refer to the register bit map sections of the
device-specific chapters) and the GIE bit in the PSW register. If the port interrupt is
enabled, the microcontroller is vectored to the same port interrupt service routine,
regardless of which port pin sensed the interrupt condition. The interrupt service routine
can read the WKPND register to determine which pin sensed the interrupt.

The interrupt service routine or other software should clear the pending bit. The COP888
will not enter the HALT or IDLE mode as long as any WKPND pending bit is pending
and enabled.

Upon Reset, the WKEDG register is configured to select positive-going edge sensitivity
for all Wakeup inputs. If the user wishes to change the edge sensitivity of a port pin, use
the following procedure to avoid false triggering of a Wakeup/Interrupt condition.

1. Clear the WKEN bit associated with the pin to disable that pin.

2. Write the WKEDG register to select the new type of edge sensitivity for the
pin.

3. Clear the WKPND bit associated with the pin.
4. Set the WKEN bit associated with the pin to re-enable it.

The following example illustrates the program steps for changing the edge sensitivity of
port bit 5 from positive to negative edges.

RBIT 5,WKEN ;Disable Port bit 5 for Wakeup/Interrupt
SBIT 5,WKEDG ;Select negative-going edge sensitivity
RBIT 5,WKPND ;Clear the pending bit

SBIT 5,WKEN ;Re-enable the bit for Wakeup/Interrupt

For more information on interrupts or the HALT/IDLE power-save modes, see the
respective chapters on those subjects.

7-6 INPUT/OUTPUT

Chapter 8

WATCHDOG AND CLOCK MONITOR

8.1 INTRODUCTION

Some COP888 devices have a circuit called the Watchdog and Clock Monitor. This circuit
monitors the operation of the device and reports an abnormal condition by issuing a
signal on the G1 output pin, WDOUT. The device-specific chapters indicate whether the
Watchdog and Clock Monitor is present in each COP888 family member.

The Watchdog is a circuit that monitors the number of instruction cycles being executed
and detects certain types of program execution errors. The application program must
periodically write a specific value to the Watchdog Service Register, within specific time
intervals. The Watchdog reports any failure of the software to perform this function.
Thus, a runaway program or infinite program loop will result in a Watchdog error. The
output signal resulting from an error can be used to reset the chip or to perform any other
function.

The Clock Monitor is a circuit that detects the absence of a clock signal, or a clock that is
running too slowly. A clock error is reported on the same output pin as a Watchdog error.

Using the Watchdog and Clock Monitor functions is optional. The Clock Monitor function
can be disabled by the software following a Reset. The Watchdog function always
operates, but the user application can simply ignore the output signal generated on the
WDOUT pin.

8.2 WATCHDOG OPERATION

The Watchdog circuit looks at the contents of the IDLE Timer (Timer T0) to keep track
of the number of instruction cycles being executed. The IDLE Timer is a 16-bit register
that counts down continuously at the instruction clock rate. (The instruction clock runs
at one-tenth the frequency of the chip clock.) The IDLE Timer is not memory-mapped,
and cannot be read or written by the software.

The application software must write a specific value at periodic intervals into the
Watchdog Service Register (WDSVR). This must happen within a “time window”: no
more often than once every 2048 instruction cycles, but at least as often as once every
65536 cycles initially. The lower limit is fixed at 2048 instruction cycles, but the upper
limit can be programmed to be either 8192, 16384, 32768 or 65536 instruction cycles.
Programming of the upper limit can be performed only once following a chip Reset.

Figure 8-1 is a block diagram showing the logic of the Watchdog circuit.

The Watchdog Service Register, WDSVR, is an 8-bit memory-mapped register. The
software “services” this register at periodic intervals by writing a specific value to it. If
the written value is correct, the “Valid Service” signal is asserted; if the value is not
correct, it is considered an “Invalid Service,” which triggers a Watchdog error.

WATCHDOG AND CLOCK MONITOR 8-1

MSB LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

St LI T TTTTTTTT T

i
WINDOW
N INSTRUCTION

UPPER LIMIT CLEAR CLOCK

VALID

SERVIGE P CK

WD-LOWER BLOCK
S CLK
VALID

SERVICE ———» CLEAR |

‘ OR {
WD-UPPER BLOCK

wDOUT
INVALID
SERVICE

[WDSRV REGISTER J—> WDSRV
COMPARE | | VALID
{—v SERVICE
I INTERNAL DATA BUS |
888_wdog_blk

Figure 8-1 Watchdog Logic Block Diagram

The Watchdog logic contains two internal logic blocks called WD-Upper and WD-Lower.
The WD-Upper logic block establishes the upper limit of the time window, and the WD-
Lower logic block establishes the lower limit. The WD-Upper block can be programmed
to use any of the four most significant bits of the IDLE Timer register to clock its counter,
thus establishing the upper limit at 8192, 16384, 32768, or 65536 instruction cycles. The
WD-Lower logic block uses bit 10 of the IDLE Timer register to clear its counter, thus
establishing a fixed lower limit of 2048 instruction cycles.

Each of the two logic blocks contains a 1-bit counter. If either counter overflows (is
clocked twice without being cleared), a Watchdog error is reported on WDOUT. In the
WD-Upper block, the counter is clocked by an IDLE Timer bit at intervals of 8192, 16384,
32768, or 65536 instruction cycles. The counter is cleared by a valid servicing of WDSVR.
Thus, the Watchdog Service Register must be serviced at least as often as the
programmed upper limit. In the WD-Lower block, the counter is clocked by a valid
servicing of WDSVR, and cleared by bit 10 of the IDLE Timer register every 2048
instruction cycles. Thus, the Watchdog Service Register must be serviced no more than
once every 2048 instruction cycles. If WDSVR is serviced not often enough for the WD-
Upper block or too often for the WD-Lower block, an overflow occurs and an error is
reported.

The specific value that must be written periodically to the WDSVR register is explained
in Section 8.4.

8-2 WATCHDOG AND CLOCK MONITOR

Operation of the Watchdog circuit is inhibited during the HALT and IDLE modes. The
contents of the IDLE timer are affected by the HALT mode under certain conditions (i.e.,
when a start-up delay is used) and by the IDLE mode. Upon exit from the HALT or IDLE
mode in these cases, the on-chip hardware services the Watchdog circuit automatically.
Therefore, upon exit from the HALT or IDLE mode, the application software should
service the Watchdog Service Register within the established upper limit of 8192, 16384,
32768, or 65536 instruction cycles as usual, but not before 2048 instruction cycles.
Otherwise, a Watchdog error may be triggered.

For the HALT mode, the re-starting of the Watchdog count only occurs if a start-up delay
is used. If a start-up delay is not used, the Watchdog service window resumes counting
normally upon exit from the HALT mode, as if the HALT had never occurred. For more
information on the IDLE mode, HALT mode, and HALT mode start-up delay, see
Chapter 6. For more information on the IDLE Timer, see Chapter 4.

8.3 CLOCK MONITOR OPERATION

The Clock Monitor constantly checks the chip clock and issues an error signal on the
WDOUT pin if the clock is not running, or is running very slowly. Upon Reset, the
microcontroller starts out with the Clock Monitor enabled. If the clock is not operating
properly at that time, an error signal is issued on the WDOUT pin. If the clock fails to
operate correctly at a later time, an error signal is issued when the error is detected. The
Clock Monitor works even in the HALT and IDLE modes. Therefore, any entry into the
HALT mode is reported as a clock error.

The Clock Monitor circuit monitors the instruction clock, which runs at one-tenth the
frequency of the chip clock. An instruction clock running at 10 KHz or higher is
interpreted as normal operation. An instruction clock running at 10 Hz or slower is
considered too slow, and is reported as an error. The pass/fail threshold frequency can
vary within the range of 10 Hz and 10 KHz, so an instruction clock running in that range
may or may not trigger an error.

Following a Reset, the Clock Monitor function can be disabled by the software.
Configuration of the Watchdog and Clock Monitor functions can be performed only once
following a Reset, as explained below.

8.4 CONFIGURATION

The Watchdog and Clock Monitor circuits are inhibited during a Reset (with the RESET
signal active), and begin operating as soon as the microcontroller comes out of a Reset.
Initially, the Watchdog operates with the service window set to the maximum upper limit
of 65,536 instruction cycles. The Clock Monitor will detect a non-functioning clock
immediately following the Reset, so the active RESET signal should be made long enough
to allow the clock circuit to reach its full amplitude and a stable operating frequency.

The Watchdog and Clock Monitor functions can be configured only once following a chip
Reset. Once configured, they cannot be configured again unless there is another Reset.
They are configured by writing a data byte to the Watchdog Service Register, WDSVR, a

WATCHDOG AND CLOCK MONITOR 8-3

read/write register residing at address C7 Hex. The format of the data byte is shown in
Figure 8-2.

WINDOW KEY CLOCK

SELECT DATA MONITOR
mMsB LsSB

X X 0 1 1 0 0 y

7 6 5 4 3 2 1 0

888_reg_wdsvr

Figure 8-2 Watchdog Service Register (WDSVR) Format

The data byte written to WDSVR for the first time following a Reset configures the
Watchdog circuit and the Clock Monitor. To avoid a Watchdog error, this must be done no
later than 65536 instruction cycles after the RESET signal goes inactive. However, it
may be done within the first 2048 instruction cycles without triggering a Watchdog error.
Immediately following Reset is the recommended time.

The first time WDSVR is written, the two most significant bits are used to select the
upper limit of the Watchdog service window, as indicated in the table below.

WDCNT
Upper Limit of Service Window
Bit 7 | Bit 6
0 0 8,192 Instruction Cycles
0 16,384 Instruction Cycles
1 0 32,768 Instruction Cycles
1 1 65,536 Instruction Cycles

Bits 5-4-3-2-1 of WDSVR must always be written with the binary value 01100. This is a
fixed code that cannot be changed. If any other value is written at any time, a Watchdog
error is triggered.

The first time WDSVR is written, the least significant bit controls the Clock Monitor
feature. If a 1 is written, the Clock Monitor remains enabled. If a 0 is written, the Clock
Monitor is disabled.

The Watchdog and Clock Monitor can be programmed only once following a Reset. The
exact same 8-bit value used for programming must be written to the WDSVR register at
each Watchdog service. Any attempt to write a different value to WDSVR after the first
time will trigger a Watchdog error, and will not affect the Watchdog or Clock Monitor
configuration.

The WDSVR register can be read as well as written. The values read back from bits 7, 6,
and O reflect the values that were written to that register at the time of programming
(the first time following Reset). However, bits 5 through 1 always read back as all zeros.
The code bits written to the register (01100) cannot be read back.

8-4 WATCHDOG AND CLOCK MONITOR

8.5 ERROR REPORT ON WDOUT

An abnormal condition detected by the Watchdog or Clock Monitor is reported by issuing
a signal on the G1 output pin, WDOUT. In devices that have the Watchdog and Clock
Monitor, the G1 pin operates independently from the Port G configuration and data
registers, allowing bit 1 of those registers to be used as independent software flags.

Under normal conditions, the WDOUT pin remains in the high-impedance state. When
a Watchdog error is detected, the pin is pulled low for a period ranging from 16 to 32
instruction cycles, after which it returns to the high-impedance state. During this time
that WDOUT is low, any Watchdog service (writing to WDSVR) is ignored. After a
Watchdog error, the Watchdog service window restarts when the WDOUT pin returns to
the high-impedance state.

In the case of a Clock Monitor error, the WDOUT pin remains in the low state as long as
the clock is not operating properly. When the clock returns to normal operation, the
WDOUT pin returns to the high-impedance state after a delay of 16 to 32 instruction
cycles.

The WDOUT pin can be used in a variety of ways. It can be simply ignored, in which case
there is no need to service the Watchdog Service Register. If WDOUT is used, a pullup
resistor is needed to pull the pin high during normal operation. When a Watchdog or
Clock Monitor error is detected, the pin goes low. This signal can be used to reset the
microcontroller or the whole system. In that case, the circuit hardware should ensure
that the RESET signal generated from WDOUT going low meets the system
requirements. Note that the WDOUT signal itself will go low for only 16 to 32 instruction
cycles for a Watchdog error.

The state of the WDOUT pin is unknown immediately following a Reset. If it starts out
active-low, it will return to the high-impedance state within 16 to 32 instruction cycles if
there is no Watchdog or Clock Monitor error.

WATCHDOG AND CLOCK MONITOR 8-5

Chapter 9

INSTRUCTION SET

9.1 INTRODUCTION

This chapter defines the instruction set of the COP888 Family members. It contains
information about the instruction set features, addressing modes and types. In addition,
it contains a detailed description of each COP888 instruction.

9.2 INSTRUCTION FEATURES
The strength of the instruction set is based on the following features:
* Mostly single-byte opcode instructions minimize program size.

* One instruction cycle for the majority of single-byte instructions to minimize pro-
gram execution time.

* Many single-byte, multiple function instructions such as DRSZ.

* Three memory mapped pointers: two for register indirect addressing, and one for
the software stack.

» Sixteen memory mapped registers that allow an optimized implementation of cer-
tain instructions.

 Ability to set, reset, and test any individual bit in data memory address space, in-
cluding the memory-mapped I/O ports and registers.

* Register-Indirect LOAD and EXCHANGE instructions with optional automatic
post-incrementing or decrementing of the register pointer. This allows for greater
efficiency (both in cycle time and program code) in loading, walking across and pro-
cessing fields in data memory.

+ Unique instructions to optimize program size and throughput efficiency. Some of
these instructions are: DRSZ, IFBNE, DCOR, RETSK, VIS and RRC.

9.3 ADDRESSING MODES

The COP888 instruction set offers a variety of methods for specifying memory addresses.
Each method is called an addressing mode. These modes are classified into two
categories: operand addressing modes and transfer-of-control addressing modes.
Operand addressing modes are the various methods of specifying an address for
accessing (reading or writing) data. Transfer-of-control addressing modes are used in
conjunction with jump instructions to control the execution sequence of the software
program.

INSTRUCTION SET 9-1

Operand Addressing Modes

9.3.1 Operand Addressing Modes

The operand of an instruction specifies what memory location is to be affected by that
instruction. Several different operand addressing modes are available, allowing memory
locations to be specified in a variety of ways. An instruction can specify an address
directly by supplying the specific address, or indirectly by specifying a register pointer.
The contents of the register (or in some cases, two registers) point to the desired memory
location. In the immediate mode, the data byte to be used is contained in the instruction
itself.

Each addressing mode has its own advantages and disadvantages with respect to
flexibility, execution speed, and program compactness. Not all modes are available with
all instructions. The Load (LD) instruction offers the largest number of addressing
modes.

The available addressing modes are:
* Direct
* Register B or X Indirect
* Register B or X Indirect with Post-Incrementing/Decrementing
* Immediate
¢ Immediate Short
* Indirect from Program Memory

The addressing modes are described below. Each description includes an example of an
assembly language instruction using the described addressing mode.

Direct. The memory address is specified directly as a byte in the instruction. In assembly
language, the direct address is written as a numerical value {or a labei that has been
defined elsewhere in the program as a numerical value).

Example: Load Accumulator Memory Direct

LD A,05
Reg/Data Memory Contents Before C(Klfients
er
Accumulator XX Hex A6 Hex
Memory Location A6 Hex A6 Hex

0005 Hex

9-2 INSTRUCTION SET

Operand Addressing Modes

Register B or X Indirect. The memory address is specified by the contents of the B
Register or X register (pointer register). In assembly language, the notation [B] or [X]
specifies which register serves as the pointer.

Example: Exchange Memory with Accumulator, B Indirect

X A,[B]
Reg/Data Memory Contents Before Contents
After
Accumulator 01 Hex 87 Hex
Memory Location 87 Hex 01 Hex
0005 Hex
B Pointer 05 Hex 05 Hex

Register B or X Indirect with Post-Incrementing/Decrementing. The relevant
memory address is specified by the contents of the B Register or X register (pointer
register). The pointer register is automatically incremented or decremented after
execution, allowing easy manipulation of memory blocks with software loops. In
assembly language, the notation [B+], [B-], [X+], or [X-] specifies which register serves as
the pointer, and whether the pointer is to be incremented or decremented.

Example: Exchange Memory with Accumulator, B Indirect with Post-

Increment
X A,[B+]
Reg/Data Memory Contents Before Contents
After
Accumulator 03 Hex 62 Hex
Memory Location 62 Hex 03 Hex
0005 Hex
B Pointer 05 Hex 06 Hex

Immediate. The data for the operation follows the instruction opcode in program
memory. In assembly language, the number sign character (#) indicates an immediate
operand.

Example: Load Accumulator Immediate

LD A#05
Reg/Data Memory Contents Before Contents
After
Accumulator XX Hex 05 Hex

INSTRUCTION SET 9-3

Operand Addressing Modes

Immediate Short. This is a special case of an immediate instruction. In the “Load B
immediate” instruction, the 4-bit immediate value in the instruction is loaded into the
lower nibble of the B register. The upper nibble of the B register is reset to 0000 binary.

Example: Load B Register Immediate Short
LD B,#7
Reg/Data Memory Contents Before Ctzléents
er
B Pointer 12 Hex 07 Hex

Indirect from Program Memory. This is a special case of an indirect instruction that
allows access to data tables stored in program memory. In the “Load Accumulator
Indirect” (LAID) instruction, the upper and lower bytes of the Program Counter (PCU
and PCL) are used temporarily as a pointer to program memory. For purposes of
accessing program memory, the contents of the Accumulator and PCL are exchanged.
The data pointed to by the Program Counter is loaded into the Accumulator, and
simultaneously, the original contents of PCL are restored so that the program can
resume normal execution.

Example: Load Accumulator Indirect

LAID
Reg/Data Memory Contents Before C(X;‘ients
er
PCU 04 Hex 04 Hex
PCL 35 Hex 36 Hex
Accumulator 1F Hex 25 Hex
Memory Location 25 Hex 25 Hex

041F Hex

9-4 INSTRUCTION SET

Transfer-of-Control Addressing Modes

9.3.2 Transfer-of-Control Addressing Modes

Program instructions are usually executed in sequential order. However, Jump
instructions can be used to change the normal execution sequence. Several transfer-of-
control addressing modes are available to specify jump addresses.

A change in program flow requires a non-incremental change in the Program Counter
contents. The Program Counter consists of two bytes, designated the upper byte (PCU)
and lower byte (PCL). The most significant bit of PCU is not used, leaving 15 bits to
address the program memory.

Different addressing modes are used to specify the new address for the Program Counter.
The choice of addressing mode depends primarily on the distance of the jump. Farther
jumps sometimes require more instruction bytes in order to completely specify the new
Program Counter contents.

The available transfer-of-control addressing modes are:
* Jump Relative
* Jump Absolute
* Jump Absolute Long
* Jump Indirect

The transfer-of-control addressing modes are described below. Each description includes
an example of a Jump instruction using a particular addressing mode, and the effect on
the Program Counter bytes of executing that instruction.

Jump Relative. In this 1-byte instruction, six bits of the instruction opcode specify the
distance of the jump from the current program memory location. The distance of the
jump can range from —31 to +32. A JP+1 instruction is not allow. The programmer should

s NND 2 b
ud>t a INuU L 1lIdveau.

Example: Jump Relative

JP 0A
Contents
Reg Contents Before After
PCU 02 Hex 02 Hex
PCL 05 Hex OF Hex

Jump Absolute. In this 2-byte instruction, 12 bits of the instruction opcode specify the
new contents of the Program Counter. The upper three bits of the Program Counter
remain unchanged, restricting the new Program Counter address to the same 4-Kbyte

INSTRUCTION SET 9-5

Transfer-of-Control Addressing Modes

address space as the current instruction. (This restriction is relevant only in devices
using more than one 4-Kbyte program memory space.)

Example Jump Absolute

JMP 0125
Contents
Reg Contents Before After
PCU 0C Hex 01 Hex
PCL 77 Hex 25 Hex

Jump Absolute Long. In this 3-byte instruction, 15 bits of the instruction opcode
specify the new contents of the Program Counter.

Example: Jump Absolute Long

JMP 03625
Contents
Reg/Memory Contents Before After
PCU 42 Hex 36 Hex
PCL 36 Hex 25 Hex

Jump Indirect. In this 1-byte instruction, the lower byte of the jump address is obtained
from a table stored in program memory, with the Accumulator serving as the low order
byte of a pointer into program memory. For purposes of accessing program memory, the
contents of the Accumulator are written to PCL (temporarily). The data pointed to by the
Program Counter (PCH/PCL) is loaded into PCL, while PCH remains unchanged.

Example: Jump Indirect

JID
Reg/Memory Contents Before C(let‘;:;ts
PCU 01 Hex 01 Hex
PCL C4 Hex 32 Hex
Accumulator 26 Hex 26 Hex
Memory Location 32 Hex 32 Hex

0126 Hex

NOTE: The VIS instruction is a special case of the Indirect Transfer of Control ad-
dressing mode, where the double-byte vector associated with the interrupt

9-6 INSTRUCTION SET

INSTRUCTION TYPES

is transferred from adjacent addresses in program memory into the Pro-
gram Counter in order to jump to the associated interrupt service routine.

94 INSTRUCTION TYPES

The instruction set contains a wide variety of instructions. The available instructions are
listed below, organized into related groups.

Some instructions test a condition and skip the next instruction if the condition is not
true. Skipped instructions are executed as no-operation (NOP) instructions.
Arithmetic Instructions

The arithmetic instructions perform binary arithmetic such as addition and subtraction,
with or without the Carry bit.

Add (ADD)

Add with Carry (ADC)
Subtract (SUB)

Subtract with Carry (SUBC)
Increment (INC)

Decrement (DEC)

Decimal Correct (DCOR)
Clear Accumulator (CLR)
Set Carry (SC)

Reset Carry (RC)

Transfer-of Control Instructions

The transfer-of-control instructions change the usual sequential program flow by
altering the contents of the Program Counter. The Jump to Subroutine instructions save
the Program Counter contents on the stack before jumping; the Return instructions pop
the top of the stack back into the Program Counter.

Jump Relative (JP)

Jump Absolute (JMP)

Jump Absolute Long (JMPL)
Jump Indirect (JID)

Jump to Subroutine (JSR)

INSTRUCTION SET 9-7

INSTRUCTION TYPES

Jump to Subroutine Long (JSRL)

Return from Subroutine (RET)

Return from Subroutine and Skip (RETSK)
Return from Interrupt (RETI)

Software Trap Interrupt (INTR)

Vector Interrupt Select (VIS)

Load and Exchange Instructions

The load and exchange instructions write byte values in registers or memory. The
addressing mode determines the source of the data.

Load (LD)
Load Accumulator Indirect (LAID)
Exchange (X)

Logical Instructions

The logical instructions perform the operations AND, OR, and XOR (Exclusive OR).
Other logical operations can be performed by combining these basic operations. For

example, complementing is accomplished by exclusive-ORing the Accumulator with FF
Hex.

Logical AND (AND)
Logical OR (OR)
Exclusive OR XOR)

Accumulator Bit Manipulation Instructions

The Accumulator bit manipulation instructions allow the user to shift the Accumulator
bits and to swap its two nibbles.

Rotate Right Through Carry (RRC)
Rotate Left Through Carry (RLC)
Swap Nibbles of Accumulator (SWAP)

Stack Control Instructions
Push Data onto Stack (PUSH)
Pop Data off of Stack (POP)

9-8 INSTRUCTION SET

DIFFERENCES BETWEEN COP800 AND COP888

Memory Bit Manipulation Instructions

The memory bit manipulation instructions allow the user to set and reset individual bits
in memory.

Set Bit (SBIT)
Reset Bit (RBIT)
Reset Pending Bit (RPND)

Conditional Instructions

The conditional instructions test a condition. If the condition is true, the next instruction
is executed in the normal manner; if the condition is false, the next instruction is skipped.

If Equal (IFEQ)

If Not Equal (IFNE)

If Greater Than (IFGT)

If Carry (IFC)

If Not Carry (IFNC)

If Bit (IFBIT)

If B Pointer Not Equal IFBNE)

And Skip if Zero (ANDSZ)

Decrement Register and Skip if Zero (DRSZ)

No-Operation Instruction

The no-operation instruction does nothing, except to occupy space in the program
memory and time in execution.

No-Operation (NOP)

9.5 DIFFERENCES BETWEEN COP800 AND COP888

The COP888 instruction set is almost identical to the COP800 instruction set. There
exist only nine differences between the two sets. These differences should be taken into
account when translating code from COP888 devices to COP800 devices, but are not
important when translating code from COP800 devices to COP888 devices.

INSTRUCTION SET 9-9

DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS

The COP888 has seven instructions not available on the COP800 family devices. These
instructions are:

* Push Data onto Stack (PUSH)

* Pop Data off of Stack (POP)

* And Skip if Zero (ANDSZ)

* Rotate Left through Carry (RLC)
* If Not Equal (IFNE)

* Vector Interrupt Select (VIS)

* Reset Pending Bit (RPND)

The COP888 instruction set contains a faster version of the LD B,# (B>15) instruction
than the COP800. In the COP800 devices, this instruction is 2-bytes/3-cycles and has an
opcode of DE/Imm# Hex. In the COP888 devices, this instruction is 2-bytes/2-cycles and
has an opcode of 9F/Imm# Hex.

The COP888 supports an additional addressing mode for the IFEQ instruction; the
memory direct-immediate operand addressing mode IFEQ MD,#).

All COP888 instructions are described in detail in Section 9.6 of this manual.

9.6 DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS

The instruction set contains 58 different instructions. Most of the arithmetic,
comparison, and data transfer (load, exchange) instructions operate with three different
addressing modes (register indirect with B pointer, memory direct, and immediate).
These various addressing modes increase the instruction total to 87. The detailed
instruction descriptions contain the following:

* Opcode mnemonic

* Instruction syntax with operand field descriptor
* Full instruction description

* Register level instruction description

* Number of instruction cycles (each cycle equal to one microsecond at full clock
speed)

* Number of bytes (1, 2, or 3) in instruction

* Hexadecimal code for the instruction bytes

9-10 INSTRUCTION SET

DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS

The following abbreviations represent the nomenclature used in the detailed instruction
description and the COP800 cross-assembler:

A

B
[B]
(B+]
(B-]

HC

MD

SP

Accumulator.

B Pointer, located in RAM register memory location 00FE.
Contents of RAM data memory location indicated by B pointer.
Same as [B], except that B pointer is post-incremented.

Same as [B], except that B pointer is post-decremented.

Carry flag, located in bit 6 of the PSW register at memory location 00EF
Hex.

Half Carry flag, located in bit 7 of the PSW register at memory location
00EF Hex.

8-bit memory address for RAM data store memory.

Memory Direct, which may be represented by an implicit label (B, X, SP), a
defined label (TEMP, COUNTER, etc.), or a direct memory address (12, OEF,
027, etc., where a leading 0 indicates hexadecimal).

Program Counter (15 bits, with a program memory addressing range of
32768).

Program Counter Upper, which contains the upper 7 bits of PC.
Program Counter Lower, which contains the lower 8 bits of PC.
Processor Status Word Register, found at memory location 00EF.

QY1 AT a1 _L10oN O Ll A4 P P 4 n
elecied negisier (1 01 19) 1011l ule NuAlvl ddld IHIEHI0y dal auuresses vu

OOFF.
the of memory register to be used (# = 0-F hexadecimal).

symbol is used to indicate an immediate value, with a leading zero (0) in-
dicating hexadecimal.

Examples:

#045 = immediate value of hexadecimal 45

#45 = immediate value of decimal 45

may also be used to indicate bit position, where # = 0-7
Example:

RBIT #, [B]
Stack Pointer, located in RAM register memory location 00FD.

INSTRUCTION SET 9-11

DETAILED FUNCTIONAL DESCRIPTIONS OF INSTRUCTIONS

X X pointer, located in RAM register memory location 00FC.

X] Contents of RAM data memory location indicated by the X pointer.
[X+] Same as [X], except that the X pointer is post-incremented.

[X-] Same as [X], except that the X pointer is post-decremented.

9-12 INSTRUCTION SET

ADC— Add with Carry

9.6.1 ADC— Add with Carry

Syntax:

Description:

Operation:

a) ADC A,[B]
b) ADC A,#
¢) ADC A,MD

The contents of
a) the data memory location referenced by the B pointer
b) the immediate value found in the second byte of the instruction

¢) the data memory location referenced by the second byte of the in-
struction

are added to the contents of the accumulator, and the result is si-
multaneously incremented if the Carry flag is found previously set.
The result is placed back in the accumulator, and the Carry flag is
either set or reset, depending on the presence or absence of a carry
from the result. Similarly, the Half Carry flag is either set or reset,
depending on the presence or absence of a carry from the low-order
nibble.

A<-A+VALUE + C
C <- CARRY; HC <- HALF CARRY

Instruction Addressing Mode Insg;z(ii;ion Bytes | Hex Op Code
ADC A|[B] Register Indirect (B Pointer) 1 1 80

ADC A# Immediate 2 2 90/Imm #
ADC AMD | Memory Direct 4 3 BD/MA/80

INSTRUCTION SET 9-13

ADD — Add

9.6.2 ADD — Add
Syntax: a) ADD A)[B]
b) ADD AMD
c¢) ADD A#
Description: The contents of the data memory location referenced by
a) the B pointer
b) the address in the second byte of the instruction
¢) the immediate value found in the second byte of the instruction
are added to the contents of the accumulator, and the result is
placed back in the accumulator. The Carry and Half Carry flags are
not changed.
Operation: A <- A + VALUE
Instruction Addressing Mode Insé:;glc:;on Bytes | Hex Op Code
ADD A|[B] Register Indirect (B Pointer) 1 1 84
ADD AMD | Memory Direct 4 3 BD/MA/84
ADD A # Immediate 2 2 94/Imm.#

9-14 INSTRUCTION SET

AND — And

9.6.3 AND — And

Syntax: a) AND A,[B]
b) AND A#
¢) AND AMD
Description: An AND operation is performed on corresponding bits of the accu-

mulator and

a) the contents of the data memory location referenced by the B
pointer.

b) the immediate value found in the second byte of the instruction.

c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.

The result is placed back in the accumulator.

Operation: A <- A AND VALUE
Instruction Addressing Mode Insg;;itaison Bytes | Hex Op Code
AND A|[B] Register Indirect (B Pointer) 1 1 85
AND A# Immediate 2 2 95/Imm.#
AND AMD | Memory Direct 4 3 BD/MA/85

INSTRUCTION SET 9-15

ANDSZ — And, Skip if Zero

9.6.4 ANDSZ — And, Skip if Zero

Syntax: ANDSZ A#

Description: An AND operation is performed on corresponding bits of the accu-
mulator and the immediate value found in the second byte of the in-
struction. If the result is zero, the next instruction is skipped. The
accumulator remains unchanged. This instruction may be used in
testing for the presence of any selected bits in the accumulator. The
mask in the second byte is used to select which bits are tested.

Operation: IF (A AND #) = 0, THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Ins(t:r;cli:on Bytes | Hex Op Code
ANDSZ A,# | Immediate 2 2 60/Imm.#

9-16 INSTRUCTION SET

CLR — Clear Accumulator

9.6.5 CLR — Clear Accumulator

Syntax: CLR A

Description: The accumulator is cleared to all zeros.

Operation: A<-0
Instruction Addressing Mode Insg;.::(l:f:on Bytes | Hex Op Code
CLRA Implicit 1 1 64

INSTRUCTION SET 9-17

DCOR — Decimal Correct

9.6.6 DCOR — Decimal Correct

Syntax:

Description:

Operation:

DCOR A

This instruction when used following an ADC (add with carry) or
SUBC (subtract with carry) instruction will decimal correct the re-
sult from the binary addition or subtraction. Note that the ADC in-
struction must be preceded with an ADD A, #066 (add hexadecimal

66) instruction for the decimal addition correction. This instruction

assumes that the two operands are in BCD (Binary Coded Decimal)
format and produces the result in the same BCD format. The Carry

and Half Carry flags remain unchanged.

A (BCD FORMAT) <- A (BINARY FORMAT)

Instruction

Addressing Mode

Instruction
Cycles

Bytes

Hex Op Code

DCOR A

Implicit

1

1

66

9-18 INSTRUCTION SET

DEC — Decrement Accumulator

9.6.7 DEC — Decrement Accumulator

Syntax: DECA

Description: This instruction decrements the contents of the accumulator and
places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A<-A-1
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
DECA Implicit 1 1 8B

INSTRUCTION SET 9-19

DRSZ REG# — Decrement Register and Skip if Result is Zero

9.6.8
Syntax:

Description:

DRSZ REG# — Decrement Register and Skip if Result is Zero
DRSZ REG#

branches (skips) out of the loop.

Operation: REG <-REG-1

IF (REG-1) =0,
THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode

Instruction
Cycles

DRSZ REG# | Register Direct (Implicit) 3 1 C (REG#)

9-20

INSTRUCTION SET

This instruction decrements the contents of the selected memory
register (selected by #, where # = 0 to F) and places the result back
in the same register. If the result is zero, the next instruction is
skipped. This instruction is useful where it is desired to repeat an
instruction sequence a given number of times. The desired number
of times that the instruction sequence is to be executed is placed in
aregister, and a DRSZ instruction with that register is coded at the
end of the sequence followed by a JP (Jump Relative) instruction
that branches back to the start of the instruction sequence. The JP
branch-back instruction is executed each time around the instruc-
tion sequence loop until the register count is decremented down to
zero, at which time the JP instruction is skipped as the program

Bytes | Hex Op Code

IFBIT — Test Bit

9.6.9 IFBIT — Test Bit

Syntax: a) IFBIT #,[B]
b) IFBIT #MD
c) IFBIT #,A
Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) from
a) the memory location reference by the B pointer is tested.
b) the memory location referenced by the address in the second byte
of the instruction is tested.
¢) the accumulator is tested.
If the selected bit is high (=1), then the next instruction is executed.
Otherwise, the next instruction is skipped.
Operation: IF BIT (#) SELECTED
IS EQUAL TO 0,
THEN SKIP NEXT INSTRUCTION
Instruction Address Mode Insér;;f:on Bytes | Hex Op Code
IFBIT #,[B] | Register Indirect (B Pointer) 1 1 T#
IFBIT #,MD | Memory Direct 4 3 BD/MA/T#
IFBIT #,A Immediate 2 2 60/2#

NOTE: The IFBIT #,A is a special subset of the more generalized ANDSZ instruc-
tion and shares the same opcode of 60. This instruction disassembles into
the ANDSZ instruction.

IFBIT 0,A equivalent to ANDSZ A #1
IFBIT 1,A equivalent to ANDSZ A, #2
IFBIT 2,A equivalent to ANDSZ A #4
IFBIT 3,A equivalent to ANDSZ A #8
IFBIT 4,A equivalent to ANDSZ A,#16
IFBIT 5,A equivalent to ANDSZ A,#32
IFBIT 6,A equivalent to ANDSZ A,#64
IFBIT 7,A equivalent to ANDSZ A #128

INSTRUCTION SET 9-21

IFBNE # — If B Pointer Not Equal

9.6.10 IFBNE # — If B Pointer Not Equal

Syntax:

Description:

Operation:

IFBNE #

If the low-order nibble of the B pointer is not equal to # (where # =
0 to F), then the next instruction is executed. Otherwise, the next
instruction is skipped. This instruction is useful where the B point-
er is walked across a data field as part of a closed loop instruction
sequence. The IFBNE instruction is coded at the end of the se-
quence followed by a JP (Jump Relative) instruction that branches
back to the start of the instruction sequence. The # coded with the
IFBNE represents the next address beyond the data field. The B
pointer instruction with post-increment or decrement of the pointer
may be used in walking across the data field in either direction. The
instruction sequence branches back and repeats until the low-order
nibble of the B pointer is found equal to the # (representing the next
address beyond the data field), at which time the JP instruction is
skipped as the program branches (skips) out of the loop.

IF B POINTER LOW-ORDER NIBBLE EQUALS #,
THEN SKIP NEXT INSTRUCTION

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

IFBNE #

Implicit 1 1 4#

9-22 INSTRUCTION SET

IFC — Test if Carry

9.6.11 IFC — Test if Carry

Syntax: IFC

Description: The next Instruction is executed if the Carry flag is found set. Oth-
erwise, the next instruction is skipped. The Carry flag is left un-
changed.

Operation: IF NO CARRY (C = 0),

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Insé;ructlon Bytes | Hex Op Code
ycles
IFC Implicit 1 1 88

INSTRUCTION SET 9-23

IFEQ — Test if Equal

9.6.12 IFEQ — Test if Equal

Syntax:

Operation:

a) IFEQ A,[B]
b) IFEQ A,#

c) IFEQ AMD
d) IFEQ MD.,#

a) The contents of the data memory location referenced by the B
pointer are compared for equality with the contents of the accu-
mulator.

b) The immediate value found in the second byte of the instruction
is compared for equality with the contents of the accumulator.

¢) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are compared for
equality with the contents of the accumulator.

d) The contents of the memory location referenced by the address in
the second byte of the instruction are compared for equality with
the immediate value found in the third byte of the instruction.

A successful equality comparison results in the execution of the
next instruction. Otherwise, the next instruction is skipped.

IF CONTENTS OF SPECIFIED LOCATION = VALUE
THEN SKIP NEXT INSTRUCTION

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

IFEQ A,[B]

Register Indirect (B Pointer)

1

82

IFEQ A#

Immediate

92/Imm.#

IFEQ AMD

Memory Direct

BD/MA/82

IFEQ MD,#

Memory Direct, Immediate

2
4
3

Wl W N[=

A9/MA/Imm. #

9-24

INSTRUCTION SET

IFGT — Test if Greater Than

9.6.13 IFGT — Test if Greater Than
Syntax: a) IFGT A,[B]
b) IFGT A#
¢) IFGT AMD
Description: The contents of the accumulator are tested for being greater than
a) the contents of the data memory location referenced by the B
pointer.
b) the immediate value found in the second byte of the instruction.
c¢) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.
A successful greater than test results in the execution of the next in-
struction. Otherwise, the next instruction is skipped.
Operation: IF A < VALUE
THEN SKIP NEXT INSTRUCTION
Instruction Addressing Mode Insé:;l‘:;:etion Bytes | Hex Op Code
IFGT A,[B] | Register Indirect (B Pointer) 1 1 83
IFGT A # Immediate 2 2 93/Imm.#
IFGT AJMD | Memory Direct 4 3 BD/MA/83

INSTRUCTION SET 9-25

IFNC — Test If No Carry

9.6.14 IFNC — Test If No Carry

Syntax: IFNC

Description: The next instruction is executed if the Carry flag is found reset. Oth-
erwise, the next instruction is skipped. The Carry flag is left un-
changed.

Operation: IF CARRY (C=1),

THEN SKIP NEXT INSTRUCTION

Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
IFNC Implicit 1 1 89

9-26 INSTRUCTION SET

IFNE — Test If Not Equal

9.6.15 IFNE — Test If Not Equal

Syntax: a) IFNE A,[B]
b) IFNE A#
¢) IFNE AMD
Description: a) The contents of the data memory location referenced by the B
pointer are compared for inequality with the contents of the ac-
cumulator.
b) The immediate value found in the second byte of the instruction
is compared for inequality with the contents of the accumulator.
¢) The contents of the data memory location referenced by the ad-
dress in the second bye of the instruction are compared for ine-
quality with the contents of the accumulator.
A successful inequality comparison results in the execution of the
next instruction; otherwise, the next instruction is skipped.
Operation: IF A = VALUE
THEN SKIP NEXT INSTRUCTION
. . Instruction
Instruction Addressing Mode Cyecles Bytes | Hex Op Code
IFNE A,[B] | Register Indirect (B Pointer) 1 1 B9
IFNE A# Immediate 2 2 99/Imm.#
IFNE AMD | Memory Direct 4 3 BD/MA/B9

INSTRUCTION SET 9-27

INC — Increment Accumulator

9.6.16 INC — Increment Accumulator

Syntax: INCA

Description: This instruction increments the contents of the accumulator and

places the result back in the accumulator. The Carry and Half Carry
flags remain unchanged.

Operation: A<-A+1
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
INCA Implicit 1 1 8A

9-28 INSTRUCTION SET

INTR — Interrupt (Software Trap)

9.6.17 INTR — Interrupt (Software Trap)

Syntax:

Description:

Operation:

INTR

This zero opcode software trap instruction first stores its return ad-
dress in the data memory software stack and then branches to pro-
gram memory location 00FF. This memory location is the common
switching point for all COP888 interrupts, both hardware and soft-
ware. The program starting at memory location 00FF sorts out the
priority of the various interrupts and then vectors to the correct in-
terrupt service routine.

In order to save the return address, the contents of PCL (Lower 8
bits of PC) are transferred to the data memory location referenced
by SP (Stack Pointer). SP is then decremented. The contents of PCU
(Upper 7 bits of PC) are transferred to the new data memory loca-
tion referenced by SP. Then SP is again decremented to set up the
software stack for the next interrupt or subroutine.

The INTR instruction is not meant to be programmed explicitly, but
rather to be automatically invoked when certain error conditions oc-
cur. The reading of undefined (non-existent) program memory pro-
duces all zeros, which in turn invokes the INTR instruction. A
similar software trap can be set up if the subroutine Stack Pointer
(SP) is initialized to the data memory location at the top of user
RAM space. Then if the software stack is ever overpopped (more
subroutine or interrupt returns than calls), all ones will be returned
from the undefined (non-existent) RAM. This will cause the pro-
gram to return to the program address FFFF Hex, which in turn
will read all zeros and once again invoke the software trap INTR in-
struction.

[SP] <- PCL

[SP-1]<- PCU

[SP - 2] : SET UP FOR NEXT STACK REFERENCE
PC <- OFF

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

INTR

Implicit 7 1 00

INSTRUCTION SET 9-29

JID — Jump Indirect

9.6.18 JID — Jump Indirect

Syntax:

Description:

Operation:

JID

The JID instruction uses the contents of the accumulator to point to
an indirect vector table of program addresses. The contents of the
accumulator are transferred to PCL (Lower 8 bits of PC), after
which the data accessed from the program memory location ad-
dressed by PC is transferred to PCL. The program then jumps to the
program memory location accessed by PC. It should be observed
that PCU (Upper 7 bits of PC) is never changed during the JID in-
struction, so that the Jump Indirect must jump to a location in the
current program memory page of 256 addresses. However, if the JID
instruction is located at the last address of the page, the PC counter
will have already incremented over the page boundary, and both ac-
cesses to program memory (vector table and the new instruction)
will be fetched from the next page of 256 bytes.

PCL<-A
PCL <- Program Memory (PCU,A)

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

JID Indirect 3 1 A5

9-30 INSTRUCTION SET

JMP — Jump Absolute

9.6.19 JMP — Jump Absolute

Syntax:

Description:

Operation:

JMP ADDR

This instruction jumps to the programmed memory address. The
value found in the lower nibble (4 bits) of the first byte of the in-
struction is transferred to the lower nibble of PCU (Upper 7 bits of
PC), and then the value found in the second byte of the instruction
is transferred to PCL (Lower 8 bits of PC). The program then jumps
to the program memory location accessed by PC.

It should be noted that the upper 3 bits of PC (12-14) are not
changed, so the Jump Absolute instruction must jump to an address
located in the current 4-Kbyte program memory segment. However,
if a JMP instruction is programmed in the last address of the mem-
ory segment, the PC counter will have already incremented over the
memory segment boundary; therefore, the jump is to a memory lo-
cation in the following 4-Kbyte memory segment.

PC11-8 <- HIADDR (LOW NIBBLE OF FIRST BYTE OF
INSTRUCTION)

PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction

Addressing | Instruction

Mode Cycles Bytes Hex Op Code

JMP ADDR

Absolute 3 2 2HIADDR/LOADDR

INSTRUCTION SET 9-31

JMPL — Jump Absolute Long

9.6.20 JMPL — Jump Absolute Long

Syntax: JMPL ADDR

Description: The JMPL instruction allows branching to anywhere in the 32-
Kbyte program memory space. The values found in the second and
third bytes of the instruction are transferred to PCU (Upper 7 bits
of PC) and PCL (Lower 8 bits of PC) respectively. The program then
jumps to the program memory location accessed by PC.

Operation: PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Instruction | Addressing Mode Insct‘ructlon Bytes Hex Op Code
ycles
JMPL ADDR | Absolute 4 3 AC/HIADDR/LOADDR

9-32 INSTRUCTION SET

JP — Jump Relative

9.6.21 JP — Jump Relative
Syntax: JP DISP

Description: The relative displacement value found in the instruction opcode (all
8 bits) is added to the Program Counter (PC). The normal PC incre-
mentation is also performed. The displacement value allows a
branch back from 0 to 31 places (with the 0 representing an infinite
closed loop branch to itself) and a branch forward from 2 to 32 plac-
es. A branch forward of 1 is not allowed, since this zero opcode con-
flicts with the INTR software trap instruction.

Operation: PC <- PC + DISP + 1 (DISP = 0)
Instruction | Addressing Mode In%ructlon Bytes Hex Op Code
ycles
JP DISP Relative 3 1 0,1, E,F + DISP #

INSTRUCTION SET 9-33

JSR — Jump Subroutine

9.6.22 JSR — Jump Subroutine

Syntax:

Description:

Operation:

JSR ADDR

This instruction pushes the return address onto the software stack
in data memory and then jumps to the subroutine address. The con-
tents of PCL (Lower 8 bits of PC) are transferred to the data mem-
ory location referenced by SP (Stack Pointer). SP is then
decremented, followed by the contents of PCU (Upper 7 bits of PC)
being transferred to the new data memory location referenced by
SP. The return address has now been saved on the software stack in
data memory RAM. Then SP is again decremented to set up the
software stack reference for the next subroutine.

Next, the value found in the lower nibble (4 bits of the first byte of
the instruction) is transferred to the lower nibble of PCU, and the
value found in the second byte of the instruction is transferred to
PCL. The program then jumps to the memory location accessed by
PC. It should be noted that the upper 3 bits of PC (12-14) are not
changed, so the subroutine must be located in the current 4-Kbyte
program memory segment. If a JSR instruction is programmed in
the last address of the memory segment, however, the PC counter
will have already incremented over the memory segment boundary;
therefore, the subroutine must be located in the next memory seg-
ment.

[SP] <- PCL

[SP - 1] <-PCU

[SP - 2]: SET UP FOR NEXT STACK REFERENCE

PC11-8 <- HTADDR (LOW NIBBLE OF FIRST BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (SECOND BYTE OF INSTRUCTION)

Instruction

Addressing Mode

Instruction

Cycles Bytes Hex Op Code

JSR ADDR

Absolute 5 2 3HIADDR/LOADDR

9-34

INSTRUCTION SET

JSRL — Jump Subroutine Long

9.6.23 JSRL — Jump Subroutine Long

Syntax:

Description:

Operation:

JSRL ADDR

The JSRL instruction allows the subroutine to be located anywhere
in the 32-Kbyte program memory space. The instruction pushes the
return address onto the software stack in data memory and then
jumps to the subroutine address.

The contents of PCL (Lower 8 bits of PC) are transferred to the data
memory location referenced by SP (Stack Pointer). SP is then decre-
mented, followed by the contents of PCU (Upper 7 bits of PC) being
transferred to the new data memory location referenced by SP. The
return address is now saved on the software stack in data memory
RAM. Then SP is again decremented to set up the software stack
reference for the next subroutine.

Next, the values found in the second and third bytes of the instruc-
tion are transferred to PCU and PCL respectively. The program
then jumps to the program memory location accessed by PC.

[SP] <- PCL

[SP-1]<-PCU

[SP - 2]: SET UP FOR NEXT STACK REFERENCE
PC14-8 <- HIADDR (SECOND BYTE OF INSTRUCTION)
PC7-0 <- LOADDR (THIRD BYTE OF INSTRUCTION)

Instruction

Addressing Mode

Instruction

Cycles Bytes Hex Op Code

JSRL ADDR

Absolute 5 3 AD/HIADDR/LOADDR

INSTRUCTION SET 9-35

LAID — Load Accumulator Indirect

9.6.24 LAID — Load Accumulator Indirect

Address Mode:

Description:

Operation:

INDIRECT

The LAID instruction uses the contents of the accumulator to point
to a fixed data table stored in program memory. The data table usu-
ally represents a translation matrix, such as the input from a key-
board or the output to a display.

The contents of the accumulator are exchanged with the contents of
PCL (Lower 8 bits of PC). The data accessed from the program
memory location addressed by PC is then transferred to the accu-
mulator. Simultaneously, the original contents of PCL are trans-
ferred back to PCL from the accumulator. It should be observed that
PCU (Upper 7 bits of PC) is not changed during the LAID instruc-
tion, so that the load accumulator indirect along with the associated
fixed data table must both be located in the current memory page of
256 bytes. However, if the LAID instruction is located at the last ad-
dress of the page, the PC counter will have already incremented
over the page boundary resulting in the operand being fetched from
the next page. Consequently, in this instance, the fixed data table
must reside in the next page of 256 bytes in the program memory.

A <- Program Memory (PCU, A)

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

LAID

Indirect 3 1 A4

9-36 INSTRUCTION SET

LD — Load Accumulator

9.6.25 LD — Load Accumulator

Syntax:

Description:

a) LD A,[B]
b) LD A,[B+]
¢) LD A[B-]
d) LD A#

e) LD AMD
f) LD A,X]
g) LD A [X+]
h) LD A,[X-]

a) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator.

b) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-incremented.

c) The contents of the data memory location referenced by the B
pointer are loaded into the accumulator, and then the B pointer
is post-decremented.

d) The immediate value found in the second byte of the instruction
is loaded into the accumulator.

e) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are loaded into the ac-
cumulator.

f) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator.

g) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-incremented.

h) The contents of the data memory location referenced by the X
pointer are loaded into the accumulator, and then the X pointer
is post-decremented.

INSTRUCTION SET 9-37

LD — Load Accumulator

Operation: A <- VALUE
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles

LD A,[B] Register Indirect (B Pointer) 1 1 AE

LD A,[B+] Register Indirect With Post- 2 1 AA
Incrementing B Pointer

LD A,[B-] Register Indirect With Post- 2 1 AB
Decrementing B Pointer

LD A# Immediate 2 2 98/Imm.#

LD AMD Memory Direct 3 2 9D/MA

LD A,[X] Register Indirect (X Pointer) 3 1 BE

LD A,[X+] Register Indirect With Post- 3 1 BA
Incrementing X Pointer

LD A,[X-] Register Indirect With Post- 3 1 BB
Decrementing X Pointer

9-38

INSTRUCTION SET

LD — Load B Pointer

9.6.26 LD — Load B Pointer
Syntax: a) LD B,# (# < 16)
b) LD B,# (# > 15)

Description: a) The one’s complement of the value found in the lower nibble (4
bits) of the instruction is transferred to the lower-nibble position
of the B pointer register, with the upper-nibble position being
cleared to all zeros.

b) The immediate value found in the second byte of the instruction
is transferred to the B pointer register.

Operation: a) B3-B0 <- # and B7-B4 <- 0
b) B <- #
Instruction Addressing Mode Insé;gﬁ::on Bytes | Hex Op Code
LD B,# Short Immediate 1 1 5(15-#)
LD B,# Immediate 2 2 9F/Imm.#

INSTRUCTION SET 9-39

LD — Load Memory

9.6.27 LD — Load Memory

Syntax: a) LD [Bl#

b) LD [B+],#

¢) LD [B-1,#

d) LD MD,#

Description: a) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer.

b) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-incremented.

¢) The immediate value found in the second byte of the instruction
is loaded into the data memory location referenced by the B
pointer, and then the B pointer is post-decremented.

d) The immediate value found in the third byte of the instruction is
loaded into the data memory location referenced by the address
in the second byte of the instruction.

Operation: a) [B] <- #

b) [Bl<-#;,B<-B+1

¢ [Bl<-#,B<-B-1

d) MD <- #

Instruction Addressing Mode Instruction Bytes | Hex Op Code

Cycles

LD [Bl# Register Indirect/Immediate 2 2 9E/Imm.#

LD [B+],# Register Indirect With Post- 2 9A/Imm.#
Incrementing/Immediate

LD [B-1,# Register Indirect With Post- 2 2 9B/Imm.#
Decrementing/Immediate

LD MD,# Memory Direct/Immediate 3 3 BC/MA/Imm.#

9-40 INSTRUCTION SET

LD — Load Register

9.6.28 LD — Load Register
Syntax: LD REG,#

Description: The immediate value found in the second byte of the instruction is
loaded into the data memory register referenced by the low-order
nibble of the first byte of the instruction.

Operation: REG <- #
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
LD REG,# Implicit/Immediate 3 2 DREG#)/Imm.#

INSTRUCTION SET 9-41

NOP — No Operation

9.6.29 NOP — No Operation
Syntax: NOP

Description: No operation is performed by this instruction, so the net result is a
delay of one instruction cycle time.

Operation: NO OPERATION
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
NOP Implicit 1 1 B8

9-42 INSTRUCTION SET

OR — Or

9.6.30 OR — Or

Syntax: a) OR A,[B]
b) OR A#
c) OR AMD
Description: An OR operation is performed on corresponding bits of the accumu-
lator with
a) the contents of the data memory location referenced by the B
pointer.
b) the immediate value found in the second byte of the instruction.
c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.
The result is placed back in the accumulator.
Operation: A <- AOR VALUE
Instruction Addressing Mode Insé.;lcl;::sion Bytes | Hex Op Code
OR A,[B] Register Indirect (B Pointer) 1 1 87
OR A# Immediate 2 2 97/Imm.#
OR AMD Memory Direct 4 3 BD/MA/87

INSTRUCTION SET 9-43

POP — Pop Stack

9.6.31 POP — Pop Stack

Syntax: POP A
Description: The Stack Pointer (SP) is incremented, and then the contents of the
data memory location referenced by the SP are transferred to the
accumulator.
Operation: SP<-SP+1
A <-[SP]
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
POP Implicit 3 1 8C

9-44 INSTRUCTION SET

PUSH — Push Stack

9.6.32 PUSH — Push Stack
Syntax: PUSH A
Description: The contents of the accumulator are transferred to the data memory
location referenced by the Stack Pointer (SP), and then the SP is
decremented.
Operation: [SP]1<-A
SP<-SP-1
Instruction Addressing Mode In%;ructlon Bytes | Hex Op Code
ycles
PUSH Implicit 3 1 67

INSTRUCTION SET 9-45

RBIT — Reset Memory Bit

9.6.33 RBIT — Reset Memory Bit

Syntax: a) RBIT #,[B]
b) RBIT #,MD
Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) of the

data memory location referenced by the
a) B pointer is reset to 0.

b) address in the second byte of the instruction is reset to 0.

Operation: [Address:#] <- 0
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
RBIT #,[B] Register Indirect (B Pointer) 1 1 6(8 + #)
RBIT #, MD | Memory Direct 4 3 BD/MA/6(8+#)

9-46 INSTRUCTION SET

RC — Reset Carry

9.6.34 RC — Reset Carry

Syntax: RC
Description: Both the Carry and Half Carry flags are reset to 0.
Operation: C<-0
HC<-0
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
RC Implicit 1 1 A0

INSTRUCTION SET 9-47

RET — Return from Subroutine

9.6.35 RET — Return from Subroutine

Syntax:

Description:

Operation:

RET

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), after which SP is again incremented. Next, the
contents of the data memory location referenced by SP are trans-
ferred to PCL (Lower 8 bits of PC). The return address has now been
retrieved from the software stack in data memory RAM. The pro-
gram now jumps to the program memory location accessed by PC.

PCU <- [SP + 1]
PCL <- [SP + 2]
[SP + 2]: SET UP FOR NEXT STACK REFERENCE

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

RET

Implicit 5 1 8E

9-48 INSTRUCTION SET

RETI — Return from Interrupt

9.6.36 RETI — Return from Interrupt

Syntax:

Description:

Operation:

RETI

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), and SP is again incremented. Next, the contents of
the data memory location referenced by SP are transferred to PCL
(Lower 8 bits of PC). The return address has now been retrieved
from the software stack in data memory RAM. The program now
jumps to the program memory location accessed by PC. The Global
Interrupt Enable flag (GIE) is set to 1.

PCU <- [SP + 1]

PCL <- [SP + 2]

[SP + 2]: SET UP FOR NEXT STACK REFERENCE
GIE <-1

Instruction

Instruction

Addressing Mode Cycles

Bytes | Hex Op Code

RETI

Implicit 5 1 8F

INSTRUCTION SET 9-49

RETSK — Return and Skip

9.6.37 RETSK — Return and Skip

Syntax:

Description:

Operation:

RETSK

The Stack Pointer (SP) is first incremented. The contents of the data
memory location referenced by SP are then transferred to PCU (Up-
per 7 bits of PC), and SP is again incremented. Next, the contents of
the data memory location referenced by SP are transferred to PCL
(Lower 8 bits of PC). The return address has now been retrieved
from the software stack in data memory RAM. The program now
jumps to and then skips the instruction in the program memory lo-
cation accessed by PC.

PCU <-[SP + 1]

PCL <- [SP + 2]

[SP + 2] : SET UP FOR NEXT STACK REFERENCE
SKIP NEXT INSTRUCTION

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

RETSK

Implicit 5 1 8D

9-50 INSTRUCTION SET

RLC — Rotate Accumulator Left Through Carry

9.6.38 RLC — Rotate Accumulator Left Through Carry
Address Mode: RLCA

Description: The contents of the accumulator and Carry flag are rotated left one
bit position, with the Carry flag serving as a ninth bit position link-
ing the ends of the 8-bit accumulator. The previous carry is trans-
ferred to the low-order bit position of the accumulator. The high-
order accumulator bit (A7) is transferred to the Carry flag. The A3
(high-order bit of the low-order nibble) of the accumulator is trans-
ferred into the Half Carry flag (HC) as well as into the A4 bit posi-

tion.
Operation: C<-AT7<-AB6<-A5<-A4<-A3<-A2<-A1< A0<-C
HC <- A3
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
RLC A Implicit 1 1 A8

INSTRUCTION SET 9-51

RPND — Reset Pending

9.6.39 RPND — Reset Pending
Syntax: RPND

Description: The RPND instruction resets the Non-Maskable Interrupt Pending

flag (NMIPND) provided that the NMI interrupt has already been
acknowledged and the Software Trap Pending flag was not found
set. Also, RPND unconditionally resets the Software Trap Pending
flag (STPND).

Operation: IF NMI interrupt acknowledged and STPND = 0

THEN NMPND <- 0 and STPND <- 0
ELSE STPND <- 0

Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
RPND Implicit 1 1 B5
9-52 INSTRUCTION SET

RRC — Rotate Accumulator Right Through Carry

9.6.40 RRC — Rotate Accumulator Right Through Carry

Address Mode: RRCA

Description: The contents of the accumulator and Carry flag are rotated right
one bit position, with the Carry flag serving as a ninth bit position
linking the ends of the 8-bit accumulator. The previous carry is
transferred to the high-order bit position of the accumulator. The
low-order accumulator bit (A0) is transferred to both the Carry flag

and the Half Carry flag.
Operation: C->A7->A6->A5->A4->A3->A2->A1->A0->C
A0 -> HC
. . Instruction
Instruction Addressing Mode Cycles Bytes | Hex Op Code
RRCA Implicit 1 1 BO

INSTRUCTION SET 9-53

SBIT — Set Memory Bit

9.6.41 SBIT — Set Memory Bit

Syntax: a) SBIT #,[B]
b) SBIT #MD
Description: The selected bit (# = 0 to 7, with 7 being the high-order bit) of the

data memory location referenced by the
a) B pointer is set to 1.

b) address in the second byte of the instruction is set to 1.

Operation: [Address:#] <- 1
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
SBIT #,[B] Register Indirect (B Pointer) 1 1 78 + #)
SBIT # MD | Memory Direct 4 3 BD/MA/7(8+#)

9-54 INSTRUCTION SET

SC — Set Carry

9.6.42 SC — Set Carry

Syntax: SC
Description: Both the Carry and Half Carry flags are set to 1.
Operation: C<-1
HC«<-1
Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles
SC Implicit 1 1 Al

INSTRUCTION SET 9-55

SUBC — Subtract with Carry

9.6.43 SUBC — Subtract with Carry

Syntax:

Description:

a) SUBC A,[B]
b) SUBC A,#
¢) SUBC AMD

a) The contents of the data memory location referenced by the B
pointer are subtracted from the contents of the accumulator, and
the result is simultaneously decremented if the Carry flag is
found previously reset.

b) The immediate value found in the second byte of the instruction
is subtracted from the contents of the accumulator, and the result
is simultaneously decremented if the Carry flag is found previ-
ously reset.

c) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are subtracted from
the contents of the accumulator, and the result is simultaneously
decremented if the Carry flag is found previously reset.

The result is placed back in the accumulator, and the Carry flag is
either reset or set, depending on the presence or absence of a borrow
from the result. Similarly, the Half Carry flag is either reset or set,
depending on the presence or absence of a borrow from the low-or-
der nibble.

This instruction is implemented by adding the one's complement of
the subtrahend to the accumulator and then incrementing the re-
sult. Consequently, the borrow is the equivalent of the absence of
carry and vice versa. Similarly, the half carry is the equivalent of
the absence of half borrow and vice versa. A previous borrow (ab-
sence of previous carry) will inhibit the incrementation of the result.

9-56 INSTRUCTION SET

SUBC — Subtract with Carry

Operation: A <-A+VALUE + C
C <- ABSENCE OF BYTE BORROW
HC <- ABSENCE OF LOW NIBBLE HALF BORROW

Instruction Addressing Mode Insé:;t(:lcet;on Bytes | Hex Op Code
SUBC A,[B] | Register Indirect (B Pointer) 1 1 81
SUBC A,# Immediate 2 2 91/Imm.#
SUBC A,MD | Memory Direct 4 3 BD/MA/81

INSTRUCTION SET 9-57

SWAP — Swap Nibbles of Accumulator

9.6.44 SWAP — Swap Nibbles of Accumulator

Syntax: SWAP A
Description: The upper and lower nibbles of the accumulator are exchanged.
Operation: A(7-4) <--> A3 -0)
Instruction Addressing Mode Insé;ructlon Bytes | Hex Op Code
ycles
SWAP A Implicit 1 1 65

9-58 INSTRUCTION SET

VIS — Vector Interrupt Select

9.6.45 VIS — Vector Interrupt Select

Syntax:

Description:

Operation:

VIS

The purpose of the VIS instruction is to vector to the interrupt ser-
vice routine for the interrupt with the highest priority and arbitra-
tion ranking that is currently enabled and requesting. The VIS
instruction expedites this procedure of vectoring to the interrupt
service routine.

All interrupts branch to program memory location 00FF Hex once
an interrupt is acknowledged. Thus, any desired context switching
(such as storing away the contents of the accumulator or B or X
pointer) is normally programmed starting at location 00FF Hex, fol-
lowed by the VIS instruction. The VIS instruction can be pro-
grammed at memory location 00FF Hex if no context switching is
desired.

The VIS instruction first jumps to a double-byte vector in a 32-byte
interrupt vector program memory table that is located at the top of
a program memory block from address xyEO to xyFF Hex. Note that
xy is the block number (usually 01) where the VIS instruction is lo-
cated (each block of program memory contains 256 bytes). This dou-
ble-byte vector is transferred to PC (high-order byte first), and then
the program jumps to the associated interrupt service routine indi-
cated by the vector. These interrupt service routines can be any-
where in the 32-Kbyte program memory space.

Should the VIS instruction be programmed at the top location of a
memory block (such as address 00FF Hex), the associated 32-byte
vector table is resident at the top of the next higher block (locations
01EO to 01FF Hex with the VIS instruction at 00FF Hex).

PCL <- VA (Interrupt Arbitration Vector generated by hardware)
PCU <- Program Memory (PCU,VA)
PCL <- Program Memory (PCU,VA+1)

Instruction

. Instruction
Addressing Mode Cycles Bytes | Hex Op Code

VIS

Implicit 5 1 B4

INSTRUCTION SET 9-59

X — Exchange Memory with Accumulator

9.6.46 X — Exchange Memory with Accumulator

Syntax:

Description:

Operation:

a) X A,[B]

b) X A,[B+]
¢) X A,[B-]
d) X AMD
e) X AJ[X]

fH XAX+]
g X AX]

a) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator.

b) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-incremented.

¢) The contents of the data memory location referenced by the B
pointer are exchanged with the contents of the accumulator, and
then the B pointer is post-decremented.

d) The contents of the data memory location referenced by the ad-
dress in the second byte of the instruction are exchanged with the
contents of the accumulator.

e) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator.

f) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-incremented.

g) The contents of the data memory location referenced by the X
pointer are exchanged with the contents of the accumulator, and
then the X pointer is post-decremented.

a) A <-> [B]

b) A<>B;B<-B+1
¢c) A<>B;B<-B-1
d) A<->MD

e) A<>X

9-60 INSTRUCTION SET

X — Exchange Memory with Accumulator

D A<>X;X<-X+1
2 A<>X;X<-X-1

Instruction Addressing Mode Instruction Bytes | Hex Op Code
Cycles

X A,[B] Register Indirect (B Pointer) 1 1 A6

X A,[B+] Register Indirect With Post- 2 1 A2
Incrementing B Pointer

X A,[B-] Register Indirect With Post- 2 1 A3
Decrementing B Pointer

X AMD Memory Direct 3 2 9C/MA

X A X] Register Indirect (X Pointer) 1 B6

X A [X+] Register Indirect With Post- 3 1 B2
Incrementing X Pointer

X A [X-] Register Indirect With Post- 3 1 B3
Decrementing X Pointer

INSTRUCTION SET 9-61

XOR — Exclusive Or

9.6.47 XOR — Exclusive Or

Syntax: a) XOR A,[B]
b) XOR A#
¢) XOR AMD
Description: An XOR (Exclusive OR) operation is performed on corresponding
bits of the accumulator with
a) the contents of the data memory location referenced by the B
pointer.
b) the immediate value found in the second byte of the instruction.
c) the contents of the data memory location referenced by the ad-
dress in the second byte of the instruction.
The result is placed back in the accumulator.
Operation: A <- AXOR VALUE
Instruction Addressing Mode Insé;g;:et;on Bytes | Hex Op Code
XOR A|[B] Register Indirect (B Pointer) 1 1 86
XOR A # Immediate 2 2 96/Imm.#
XOR AMD | Memory Direct 4 3 BD/MA/86
9-62 INSTRUCTION SET

INSTRUCTION OPERATIONS SUMMARY

9.7 INSTRUCTION OPERATIONS SUMMARY

INSTR FUNCTION REGISTER OPERATION
ADD A, Meml Add A <- A + MemlI
ADC A, MemlI Add with carry A <- A + MemlI + C, C <- Carry
SUBC A, MemlI Subtract with carry A <-A-Meml + C, C <- Carry
AND A, Meml Logical AND A <- A and MemlI
ANDSZ A, Imm Logical AND Imm, Skip if Zero Skip next if (A and Imm) = 0
OR A, MemlI Logical OR A <- A or MemI
XOR A, MemlI Logical Exclusive-OR A <- A xor MemlI
IFEQ A, Meml IF equal Compare A and MemlI, Do next if A = MemI
IFEQ MD, Imm IF equal Compare MD and Imm, Do next if MD = Imm
IFNE A, MemlI IF not equal Compare A and MemlI, Do next if A # MemlI
IFGT A, Meml IF greater than Compare A and MemlI, Do next if A > Meml
IFBNE # IF B not equal Do next if lower 4 bits of B not = Imm
DRSZ Reg Decrement Reg, skip if zero Reg <- Reg - 1, skip if Reg goes to zero
SBIT #, Mem Set bit 1 to Mem.bit (bit = 0 to 7 immediate)
RBIT #, Mem Reset bit 0 to Mem.bit (bit = 0 to 7 immediate)
IFBIT #, Mem If bit If Mem.bit is true, do next instruction
RPND Reset Pending Flag Reset Software Interrupt Pending Flag
X A, Mem Exchange A with memory A <> Mem
LD B, Imm Load B with Immed. B <-Imm
LD A, MemI Load A with memory A <- Meml
LD Mem, Imm Load Direct memory Immed. Mem <- Imm
LD Reg, Imm Load Register memory immed. Reg <- Imm
X A, [B+] Exchange A with memory [B] A<>[B]B<-B+1)
X A, [X+] Exchange A with memory [X] A<>X]X<-X+1)
LD A, [B+] Load A with memory [B] A<-[B] B <-B+l)
LD A, [X+] Load A with memory [X] A<-XIX<-X=+1)
LD [B+], Imm Load memory immediate [B] <- Imm (B <- B +1)
CLRA Clear A A<0
INC A Increment A A<-A+1
DEC A Decrement A A< A-1
LAID Load A indirect from ROM A <- ROM(PU, A)
DCOR A Decimal correct A A <- BCD correction (follows ADC, SUBC)
RRC A Rotate right through carry C->A7->...->A0->C,HC <- A0
RLC A Rotate left through carry C<-AT7<-...<-A0<-C,HC <- A3
SWAP A Swap nibbles of A A7..A4 <> A3..A0
SC Set C C<-1
RC Reset C C<-0
IFC IfC If C is true, do next instruction
IFNC If Not C If C is not true, do next instruction
POP A Pop the Stack into A SP <-SP + 1, A <- [SP]
PUSH A Push A onto the Stack [SP1<-A,SP<-SP-1
VIS Vector to Interrupt Service PCL <- [VL], PCU <- [VU]
JMPL Addr. Jump absolute long PC <-ii (ii = 15 bits, 0 to 32K)
JMP Addr. Jump absolute PC11...PCO <- i (i = 12 bits)
PC15...PC12 remain unchanged
JP Disp. Jump relative short PC <-PC + r (ris -31 to +32, not 1)
JSRL Addr. Jump subroutine long [SP] <-PL, [SP - 1] <-PU, SP - 2, PC <-ii
JSR Addr. Jump subroutine [SP] <-PL,[SP-1]<-PU,SP-2,
PC11..PCO <-ii
JID Jump indirect PL <- ROM(PU, A)
RET Return from subroutine SP + 2, PL <- [SP], PU <- [SP - 1]
RETSK Return and skip SP + 2, PL <- [SP], PU <- [SP - 1],
Skip next instr.
RETI Return from interrupt SP + 2, PL <- [SP], PU<-[SP-1],GIE <- 1
INTR Generate an interrupt [SP]1<- PL, [SP - 1] <- PU, SP - 2, PC <- OFF
NOP No operation PC<-PC+1

INSTRUCTION SET 9-63

INSTRUCTION BYTES AND CYCLES

9.8

9-64

INSTRUCTION BYTES AND CYCLES

Table 9-1 Instructions Using A and C

Table 9-2 Transfer of Control Instructions

INSTRUCTION SET

BYTES/
INSTR CYCLES
CLRA 11
INCA 11
DECA 11
LAID 13
DCOR 11
RRCA 11
RLCA 11
SWAPA 11
SC 11
RC 11
IFC 11
IFNC 11
PUSHA 13
POPA 13
ANDSZ 2/2

BYTES/
INSTR CYCLES
JMPL 3/4
JMP 2/3
JP 13
JSRL 3/5
JSR 2/5
JID 13
VIS 15
RET 15
RETSK 15
RETI 15
INTR 17
NOP 11

INSTRUCTION BYTES AND CYCLES

Table 9-3 Memory Transfer Instructions

REGISTER REGISTER INDIRECT
INSTR, INDIRECT DIRECT | IMMEDIATE AUTO INCR & DECR
[B] X] [B+, B-] X+, X-]
XAZ2 1/1 1/3 2/3 1/2 1/3
LDA? 11 1/3 2/3 2/2 1/2 1/3
LD B, Imm 1/1b
LD B, Imm 2/2°¢
LD Mem, Imm | 2/2 3/3 2/2
LD Reg, Imm 2/3
a. Memory location addressed by B or X or directly
b.IFB <16
c.IFB>15
Table 9-4 Arithmetic and Logic Instructions
INSTR [B] DIRECT IMMEDIATE
ADD 1/1 3/4 2/2
ADC 11 3/4 2/2
SUBC 11 3/4 2/2
AND 1/1 3/4 2/2
OR 1/1 3/4 2/2
XOR 1/1 3/4 2/2
IFEQ 11 3/4 2/2
IFNE 11 3/4 2/2
IFGT 1/1 3/4 2/2
IFBNE 1/1
DRSZ 1/3
SBIT 11 3/4
RBIT 11 3/4
IFBIT 11 3/4
RPND 1/1

INSTRUCTION SET 9-65

INSTRUCTION BYTES AND CYCLES

V'I# LI€JI 10j 9poado ayj os[e s1 XaH 09 9p02d(:FLON —opoodo pasnun ue si ,— UOIJBI0] AIOWSW PISSAIPPE A[}09IIp € SI PJ\ — BIep JBIPIUIWI oY ST [# :0Ioym

JO;Hf Z~ Q|- R

AdAX-0041X | JAIX-004X

Jd|91+dp|ze+dr| JINC usre |40 ANGJI|00#'d A'1| [d)°L L19Y | [d)'L L19S | 11AY w4 a1 * * 440 ZS¥d |1#'440 AT|91-dF| 0-dP
AdAX-004X | JATX-00TX

Hq|9T+dP|TIe+dr| dINP gsr |H0 ANGJI|To#'d a1| (419 L19Y | [d]‘9 LIS LAY widaal| [[d'val | [XI'val |340 Zsya|i#' @40 a1(L1-de| 1-de
JAAX-00(X | 1AAX-000%X

a|pT+dejog+de] WP ¥SP |0 ANGJAI|20#'d a1 [dl‘e L19Y |[dl'¢ LIS | MSLA¥M | PW'VAT| T4SP ¥Id |40 ZSYA[1#'dd0 a'1{81-dF| 3-dP
AdOX-000% | JADX-000%

Dler+drleg+dr| dWr 4SP |00 ANHAI|€0#'d a1| (17 L19Y |[d]'Y LI9S| VdOd PN'V X TdNP | I#PIW T [O40 ZSYA |1#°040 A'1|61-dr| €-dP
AdgX-00€X | 1AGX-009X

d(21+dr|8+dr| dINP USP €0 ANGAI|p0#'d a'1| [d‘e 119 |[g]'e L1dS| vOodd |-l a1| [-dl'Val | [-XI'V a1 |940 ZS9d|1#'d40 A'1{05-dr| ¥-dP
JAVX-00VX | AAVX-00VX

V| IT+dP|Le+de| dNP USF V0 ANGJAI|S0#'d a1 [d]'Z L19¥ |[d]'3 119S| VONI |I#[+d) 71| [+dl'V @1 | [+XI'V @' |Vd0 ZSYd |1#'Vd0 a'1{13-dr| §-dP

| JA6%-006% | A6%-006X 'V [av
6,01+dr|9z+dr| JWC usr 6 ANEAI [90#'d a'1| [d]‘T 119y | [d]‘T LIS | ONJI ANJL [I#PW OIJAI| HNJI |640 ZSUA |I#'640 Q'1(33-dr| 9-dP
I A8%-008X | JI8X-008X

8| 6+dP [Sz+dP| dWNF usre 8 ANGJI |L0#'d a'1| [d]l'0 119y | [€]'0 L14S 041 #'V a1 vOTd dON |840 ZSHA |1#‘8.40 A'1|€3-dP| L-dFP
AALX-00LX | AALX-Q0LX

L| 8+dP [pg+dr| dNP use L ANGAI [80#'d 1| VHSNd |(d]L 1144]1| [dI'VH0 | I#'V ¥0 * N LA0 ZSUA |1#'LA0 A'1 |¥3-dP| 8-dP
Ad9%-009% | 4A9X-009%

9| L+dP |gg+dr| dNF 4sr 9 [ANGJI [60#'d 1| vd0Od |[d]'9 L1gdl| [g]'VHOX | #'VHOX | [dI'VX [XI'VX |940 ZS¥d |1#'940 4'1|93-dr| 6-dP
AAGX-009% | AAGX-009X

G| 9+dr |gg+dr| dWr usr g ANGAI [VO#'d a1 vdVMS |[d]‘S 11dd]| [9]'V ANV | [#'V ANV aie aNd¥ | 9d0 ZS¥d |1#°640 A'1[93-dr|0T-dP
AdPX-00%X | IIPX-00¥X

y| o+dp |12+dr| dWP usr P ANGAI ([go#'d a'1| vaT10 (4] Liddl| [dl'vaay | 1#'vaav | divl SIA |40 ZSUAd |1#9d0 Q71 |L3-dL[T1-dP
AAEX-00€X | AAEX-00EX

¢| p+dr 0g+dr| dNP qsre € ANEAI [00#'d a1 * (d)'e LI19J1| [€]'V LOJI | 1#'V 1041 | [-g'VX | [-XI'VX |6d40 ZS¥d|1#'€d40 Q'1|82-dr|3T-dr
Ad2X-002X | 4AZX-008X

7| e+dp |61+dP| AP use g ANGAT |qo#'d a1 N g1z 11941|[d]'V OFJAI | 1#'V BAAT| [+dI'VX | [+XI'V X |340 ZSUQ |1#'840 A1 |62-dr|€T-dP
AATX-00TX | AATX-00TX [av WV

1|2+dp |8T+dP| NP usr T ANEAT |H0#'d A’ i (4T L19d1| 0dns 0dns 0s * 140 ZS¥d | 1#'140 A'1|0e-dL[¥1-dP
AA0%-000% | A40X-000% #v

O|MINI |LT+dr| dWP gse 0 ANEJI |A0#'d a1| ZSANV |[d]'0 LigJdl| [9]'V DAV | I#'V DAV 0¥ VOuYd |040 ZS¥A |1#040 4’1 |18-dF|ST-dF

0 1 4 g v g 9 L 8 6 A q 0 a 4 | 4
ATAGIN Hdddn

sopoad() g-6 I[qEL

INSTRUCTION SET

9-66

Chapter 10

COP888CL

10.1 INTRODUCTION

The COP888CL is a member of the COP888 Feature Family 8-bit microcontrollers. Like
all members of this family, it provides high-performance, economical solutions for
embedded control applications. The COP888CL is a basic member of the family, useful in
low-cost applications that do not require a UART, comparator, A/D converter, or extended
data memory.

The types of features available in the COP888 Feature Family are listed below, together
with the quantity or availability of each feature in the COP888CL.

* Program Memory: Mask-programmed ROM, 4K bytes
* Data Memory: Static RAM, 128 bytes

¢ S-Register Data Memory Extension: No

* 16-Bit Programmable Timers: Timers T1 and T2
+ IDLE Mode and Timer: Yes

e Multi-Input Wakeup/Interrupt: Yes

¢ Watchdog and Clock Monitor: Yes

¢ NMI Interrupt: No

« UART: No

* Comparator: No

* A/D Converter: No

Several versions of the COP888CL are available that operate over different voltage and
temperature ranges. Refer to the COP888CL data sheet for more specific information.

This chapter describes the device-specific features of the COP888CL. Information that
applies to all COP888 Feature Family members is not provided in this chapter, but is
available in the earlier chapters of this manual.

10.2 BLOCK DIAGRAM

Figure 10-1 is a block diagram showing the basic functional blocks of the COP888CL. The
CPU core consists of an Arithmetic Logic Unit (ALU) and a set of CPU core registers.
Various functional blocks of the COP888 device communicate with the core through an
internal bus.

COP888CL 10-1

MC 8 BIT CORE /0
MODIFIED HARVARD
CLOCK ARCHITECTURE p[ifcla]L
HALT
RESET 16 BIT MICRO 1enw
TIMER WIRE/ TMER
| ,NTE_—IRRUPT T1 PLUS WATCHDOG

MULTI
DECODE B TIMER BYTES BYTES INPUT
LOGIC X T2 ROM RAM WAKEUP
SP 'y 3
PSW s
ICNTRL
CNTRL L] gggn
CPU REGISTERS

8cl_blk

Figure 10-1 COP888CL Block Diagram

10.3 DEVICE PINOUTS/PACKAGES

The COP888CL is available in 28-pin DIP, 28-pin SO, 40-pin DIP, and 44-pin PLCC
packages. Figure 10-2 shows the COP888CL device package pinouts.

Refer to the COP888CL data sheet for more detailed package information.

10.4 PIN DESCRIPTIONS

The COP888CL has four dedicated function pins: Vo, GND, CKI, and RESET. V¢ and
GND function as the power supply pins. RESET is used as the master reset input, and CKI
is used as a dedicated clock input. All other pins are available as general purpose inputs/
outputs or as defined by their alternate functions. For each device pin, Table 10-1 lists the
pin name, pin type (Input or Output), alternate function (where applicable), and device pin
number for the available package types.

10-2 COP888CL

N O WD TN - O MN

[OBOCEOIONGNGNGNONONONO]

65 4 3 2 1 4443424140
cki—| 7 3of—Go
Vee—] 8 38|— RESET

io—| o 37}—GND
1n—10 36f— D7
12— 11 44-PIN 35}—D6
i3—{12 pLCC 34f— D5
14—13 33|—D4
15— 14 32f—D3
16—{15 31f—Dp2
7—{16 30f—Db1
Lo—|17 29}— Do
18 19 2021 22 23 24 25 26 27 28
5993885349395
J
G4 — 1 28|—aG3
as — 2 27}—a2
G6 —| 3 26— Gt
G7 — 4 25|—Go
cki — 5 24|— RESET
Veo — 6 23|—GND
— 28-PIN -
o—{7 28PN 22103
n—s 21— D2
i2— o 20— D1
13— 10 19}— Do
Lo —{ 1 1817
L — 12 17}— L6
L2— 13 16 |—Ls
L3 —{ 14 15 |— L4

Figure 10-2 Device Package Pinouts

c2— 1 - 40 |— c1
c3— 2 39 |— co
G4— 3 38 |— G3
Gs—] 4 37 |— G2
G6—1 5 36 |— G1
g7—| 6 351—Go
CKI—] 7 34 |— RESET
Vec— 8 20PN 531 GnD
0— 9 oiP 32 |— D7
11—{10 31 |— D6
12—11 30 }— D5
13—{12 29 |— D4
14—113 28 |— D3
15—]14 27 |— D2
UNUSED—/15 26 |— D1
UNUSED—/16 25 |— Do
Lo—|17 24— L7
L1—|18 23— L6
L2—}19 21— 15
L3—|20 21— L4
8cl_pinout
COP888CL 10-3

Table 10-1 COP888CL Pinouts

Pin Alternate 28-Pin | 40-Pin | 44-Pin
Name | 1YP€ Function |DIP/SO| DIP | PLCC

L0 1/0 MIWU 11 17 17
L1 1/0 MIWU 12 18 18
L2 1/0 MIWU 13 19 19
L3 1/0 MIWU 14 20 20
L4 1/0 MIWU or T2A 15 21 25
L5 1/0 MIWU or T2B 16 22 26
L6 1/0 MIWU 17 23 27
L7 1/0 MIWU 18 24 28
GO 1/0 INT 25 35 39
a1 WDOUT 26 36 40
G2 1/0 T1B 27 37 a1
a3 1/0 T1A 28 38 42
G4 1/0 SO 1 3 3

G5 1/0 SK 2 4 4

G6 1 SI 3 5 5

G7 I/CKO |HALTRESTART| 4 6 6

DO 0 19 25 29
D1 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32
10 1 7 9 9

I 1 8 10 10
12 I 11 11
13 I 12 12
14 I 9 13 13
15 I 10 14 14
16 I 15
17 1 17
D4 0 29 33
D5 0 30 34
D6 0 31 35
D7 0 32 36

10-4 COP888CL

Table 10-1 COP888CL Pinouts (Continued)

Pin Type Alternate 28-Pin | 40-Pin | 44-Pin

Name Function DIP/SO | DIP PLCC
Co /0 39 43
C1 1/0 40 44
C2 I/0 1 1
C3 I/0
C4 I/0 21
C5 1/0 22
Cé I/0 23
C7 I/0 24
Unused* 16
Unused 15
Vee 6 8 8
GND 23 33 37
CKI 5 7 7
RESET 24 34 38
* On the 40-pin package Pins 15 and 16 must be connected to GND.

10.5 INPUT/OUTPUT PORTS

The number and types of I/O port pins available on the COP888CL depend on the
package type. The 28-pin packages have Port L, Port G, and a subset of Port D and Port 1.
The 40-pin packages have Port L, Port G, Port D, and a subset of Port I and Port C. The
44-pin packages have a complete set of ports, including all bits of Port L, Port G, Port D,
Port I, and Port C. Refer to Table 10-1 for a detailed list of the available port pins and
their alternate functions.

The general I/O port functions are described in Chapter 7. The COP888CL device-specific
port functions and alternate functions are described briefly below. Detailed information
on using the port pins can be found in Chapter 7, or in the section describing the specific
alternate function of the port pin.

Port C, a general-purpose bidirectional I/O port, is present in COP888CL 44-pin
packages and partially available (pins 0-3) in 40-pin packages. There are three memory
locations associated with this port: one each for the data register, for the configuration
register, and for reading the port pins directly. There are no alternate functions
associated with this port.

Port D, a general-purpose dedicated output port, is present in all COP888CL devices,
although the 28-pin package only has pins 0-3 available. There is one memory location
associated with this port, which is used for accessing the port data register. Port D output
pins can be individually set to a logic high or low by writing a one or zero, respectively,
to the associated data register bits. To avoid placing the device into a special testing
mode, the hardware design should ensure that D2 is not pulled low during a reset.

COP888CL 10-5

Port G, a bidirectional I/O port, is present in all COP888CL devices. There are three
memory locations associated with this port: one each for the data register, for the
configuration register, and for reading the port pins directly. All Port G pins have Schmitt
triggers on their inputs. Pins GO and G2 through G5 can be used as general-purpose I/Os
or for the alternate functions listed below.

GO0 INTR (External Interrupt Input)

G2 Ti1B (Timer T1B Input)

G3 T1A (Timer T1A Input/Output)

G4 SO (MICROWIRE/PLUS Serial Output)
G5 SK (MICROWIRE/PLUS Serial Clock)

Pin G1 is a dedicated Watchdog output that can be used to reset the device in the event
of a Watchdog or Clock Monitor error. This pin can not be used as a general-purpose input
or output, and should be left unconnected if not used to signal an error condition. Pin G6
can be used as a general-purpose input or for the alternate function SI (MICROWIRE/
PLUS Serial Input). This pin can not be used as a general-purpose output. Pin G7 is a
dedicated clock output (CKO) with the crystal oscillator mask option selected. This pin
can be used as a general-purpose input and HALT/Restart pin with the RC oscillator
mask option selected.

Port I, a general-purpose dedicated input port, is present in all COP888CL devices,
although not all eight pins are available in the 28- pin and 40-pin packages. There is one
memory location associated with this port, which is a read-only address used for reading
the pin values directly. All Port I pins are high-impedance inputs, which must be pulled
to a logic high or low by the external hardware. There are no alternate functions
associated with this port.

Port L, a general-purpose bidirectional I/O port, is present in all COP888CL devices.
There are three memory locations associated with this port: one each for the data register,
for the configuration register, and for reading the port pins directly. This port can be used
for general-purpose 1/O or for Multi-Input Wakeup/Interrupt, an alternate function. In
addition, L4 and L5 can be used for Timer T2 I/O. The port inputs have Schmitt triggers
to support the Multi-Input Wakeup/Interrupt feature.

10.6 PROGRAM MEMORY

The COP888CL contains 4K bytes of mask-programmed ROM memory, used for storing
application programs and fixed program data. The ROM occupies the program memory
address space from 0000 to OFFF hex. It is addressed by the 15-bit Program Counter
(PC). Emulation devices are available for developing application programs, as described
later in this chapter.

10-6 COP888CL

10.7 DATA MEMORY

The COP888CL contains 128 bytes of static RAM memory, used for temporary data
storage. The RAM occupies two segments in data memory: 112 bytes from 00-6F Hex for
general-purpose storage, and 16 bytes from F0 to FF Hex for the memory-mapped device
registers.

10.8 REGISTER BIT MAPS

The COP888CL has several 8-bit memory-mapped registers used for controlling the
CPU, MICROWIRE interface, interrupt interface, timers, and other functions. In some
control registers, multiple register bits are grouped together to control a single function,
or different control bits within a register are used for unrelated control functions.

Tables 10-2 through 10-6 show the bit maps for these registers. Each bit map shows the
name of the register, the register address, the name of each bit in the register, and a brief
description of each bit. For detailed information on using individual control bits, refer to
the relevant description elsewhere in this manual: Core registers (Chapter 2), Timers
(Chapter 4), Watchdog and Clock Monitor (Chapter 8), or Multi-Input Wakeup/Interrupt
and Timer T0 (Chapter 6).

Table 10-2 T2CNTRL, Timer T2 Control Register (Address xxC6)

Bit7 | Bit6 | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0

T2C3 | T2C2 | T2C1 | T2CO0 T2PNDA T2ENA T2PNDB T2ENB
T2C3-T2C2-T2C1-T2C0: Timer T2 control bits

T2PNDA: Timer T2 interrupt A pending flag
T2ENA: Timer T2 interrupt A enable bit
T2PNDB: Timer T2 interrupt B pending flag
T2ENB: Timer T2 interrupt B enable bit

Table 10-3 WDSVR, Watchdog Service Register (Address xxC7)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
WS1 WSO KEY4 KEY3 KEY2 KEY1 KEYO CMEN
WS1-WS0: Watchdog Window Select bits
KEY4-KEY0: Watchdog Key Data (01100)
CMEN: Clock Monitor Enable bit

COP888CL 10-7

Table 10-4 ICNTRL, Interrupt Control Register (Address xxE8)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused | LPEN | TOPND | TOEN | uWPND | uWEN | T1PNDB | T1ENB
LPEN: Port L Interrupt Enable bit (Multi-Input Wakeup/Interrupt)
TOPND: Timer T0 IDLE Timer) interrupt pending flag
TOEN: Timer TO (IDLE Timer) interrupt enable bit
uWPND: MICROWIRE interrupt pending flag
uWEN: MICROWIRE interrupt enable bit
T1PNDB: Timer T1 interrupt B pending flag
T1ENB: Timer T1 interrupt B enable bit
Table 10-5 CNTRL, Control Register (Address xxEE)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T1C3 T1C2 T1C1 T1CO MSEL IEDG SL1 SLO
T1C3-T1C2-T1C1-T1CO: Timer T1 control bits
MSEL: MICROWIRE Select bit
IEDG: External Interrupt Edge selection bit
SL1-SLO: MICROWIRE clock divide-by selection bits
Table 10-6 PSW, Processor Status Word Register (Address xxEF)
Bit7 | Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HC C T1PNDA T1ENA EXPND BUSY | EXEN GIE
HC: Half-Carry bit
C: Carry bit
T1PNDA: Timer T1 interrupt A pending flag
T1ENA: Timer T1 interrupt A enable bit
EXPND: External interrupt pending flag
BUSY: MICROWIRE Busy flag
EXEN: External interrupt enable bit
GIE: Global Interrupt Enable

10-8 COP888CL

10.9 MEMORY MAP

Table 10-7 is a memory map showing the organization of the data memory and the
specific memory addresses of the COP888CL registers, including all RAM, I/O ports, port
registers, and control registers. For purposes of upward compatibility, do not allow the
software to access any address that is designated “Reserved” in the table.

Table 10-7 COP888CL Data Memory Map

Address Contents

00-6F RAM (112 bytes general-purpose data memory)

70-7F Unused address space

80-AF Unused address space

B0-BF Reserved
Co Timer T2 lower byte
C1 Timer T2 upper byte
C2 Timer T2 autoload register T2RA lower byte
C3 Timer T2 autoload register T2RA upper byte
C4 Timer T2 autoload register T2RB lower byte
C5 Timer T2 autoload register T2RB upper byte
Cé6 Timer T2 control register, T2CNTRL
C7 Watchdog service register, WDSVR
C8 Multi-Input Wakeup edge select register, WKEDG
C9 Multi-Input Wakeup enable register, WKEN
CA Multi-Input Wakeup interrupt pending register, WKPND

CB-CF Reserved
DO Port L data register, PORTLD
D1 Port L configuration register, PORTLC
D2 Port L input pins (read only), PORTLP
D3 Reserved
D4 Port G data register, PORTGD
D5 Port G configuration register, PORTGC
D6 Port G input pins (read only), PORTGP
D7 Port I input pins (read only), PORTI
D8 Port C data register, PORTCD
D9 Port C configuration register, PORTCC
DA Port C input pins (read only), PORTCP
DB Reserved
DC Port D data register, PORTD

DD-DF Reserved

COP888CL

10-9

Table 16-7 COP888CL Data Memory Map (Continued)

Address Contents

EO0-E5 Reserved
Eé6 Timer T1 autoload register T1RB lower byte
E7 Timer T1 autoload register TIRB upper byte
E8 Interrupt control register, ICNTRL
E9 MICROWIRE serial I/O shift register, SIO
EA Timer T1 lower byte
EB Timer T1 upper byte
EC Timer T1 autoload register TIRA lower byte
ED Timer T1 autoload register T1RA upper byte
EE Control register, CNTRL
EF Processor Status Word register, PSW

F0-FB General-purpose memory-mapped registers
FC X pointer register
FD SP (Stack Pointer) register
FE B pointer register
FF Reserved

10.10 RESET
Upon reset of the COP888CL, the ports and registers are initialized as follows:

Port C data register, PORTCD: 00
Port C configuration register, PORTCC: 00
Port D data register, PORTD: FF
Port G data register, PORTGD: 00
Port G configuration register,

PORTGC: 00
Port L data register, PORTLD: 00
Port L configuration register, PORTLC: 00
Processor Status Word, PSW: 00
Control register, CNTRL: 00
Interrupt control register, ICNTRL: 00
Global Interrupt Enable flag, GIE: Cleared

Software Trap interrupt pending flag,
STPND: Cleared

10-10 COP888CL

MICROWIRE shift register, SIOR: Upon power-up reset, unknown. Upon
external reset, unchanged.

Timer T2 control register, T2CNTRL: 00

Timer T1 and T2 reload registers: Upon power-up reset, unknown. Upon
external reset, unchanged.

Accumulator A and Timer T1: Upon power-up reset, unknown. Upon
external reset, unknown (with crystal
oscillator option) or unchanged (with RC
oscillator option) :

Program Counter, PC: 00
SP (Stack Pointer) register: 6F
B pointer register: Upon power-up reset, unknown. Upon

external reset, unchanged.

X pointer register: Upon power-up reset, unknown. Upon
external reset, unchanged.

Multi-Input Wakeup edge select regis-

ter, WKEDG: 00

Multi-Input Wakeup enable register,

WKEN: 00

Multi-Input Wakeup interrupt pending

register, WKPND: Unknown

Watchdog service register, WDSVR: D9

RAM (other than FO-FC): Upon power-up reset, unknown. Upon

external reset, unchanged.

10.11 INTERRUPTS

Table 10-8 shows the types of interrupts in the COP888CL, the interrupt arbitration
ranking, and the locations of the corresponding interrupt vectors in the vector table. For
basic information on COP888 interrupts, see Chapter 3.

COP888CL 10-11

Table 10-8 COP888CL Interrupt Rank and Vector Addresses

Arbitration Rank | Interrupt Description | Vector Address*

1 Software Trap (INTR) 01FE-01FF

2 (Reserved) 01FC-01FD

3 External Interrupt Pin GO | 01FA-01FB

4 IDLE Timer Underflow 01F8-01F9

5 Timer T1A/Underflow 01F6-01F7

6 Timer T1B 01F4-01F5

7 MICROWIRE/PLUS 01F2-01F3

8 (Reserved) 01F0-01F1

9 (Reserved) 01EE-01EF

10 (Reserved) 01EC-01ED

11 Timer T2A/Underflow 01EA-01EB

12 Timer T2B 01E8-01E9

13 (Reserved) 01E6-01E7

14 (Reserved) 01E4-01E5

15 Port L. / Wakeup 01E2-01E3

16 Default VIS Interrupt 01E0-01E1
* The location of the vector table depends on the location of the VIS
instruction. Vector addresses shown in table assume a VIS location
between 00FF Hex and 01DF Hex.

10.12 MASK OPTIONS

The COP888CL has a mask-programmed ROM memory, which contains the object code
and the fixed data of the application program. At the same time that the ROM pattern is
programmed into the device, certain device options are also programmed. Each option is
assigned a number, and each option selection is assigned another number (Option 1 =3,
Option 2 =1, etc.). The types of options and the available selections are listed below.

Option 1: Clock Configuration

Crystal Oscillator (CKI/10)
G7 (CKO) is the clock generator output to a crystal/resonator
CKI is the clock input

=1

10-12 COP888CL

=2 Single-end RC controlled oscillator (CK1/10)
G7 is available as a HALT/Restart and general-purpose input

Option 2: HALT
=1 Enable HALT mode
=2 Disable HALT mode
Option 3: COP888CL Bonding
=1 44-pin PLCC
=2 40-pin DIP

=3 NA
=4 28-pin DIP
=5 28-pin SO

10.13 EMULATION DEVICES

When a COP888CL is used in a design, an emulator is necessary for developing and
testing the system hardware and application software. For information on emulators, see

Appendix C.

COP888CL 10-13

Chapter 11

COP888CG/EG/CS

11.1 INTRODUCTION

The COP888CG, COP88SEG, and COP888CS are members of the COP888 Feature
Family 8-bit microcontrollers. Like other members of this family, these devices provide
high-performance, economical solutions for embedded control applications. Each of these
three devices contains a Universal Asynchronous Receiver/Transmitter (UART), at least
one comparator, and additional RAM memory beyond the family minimum of 128 bytes.
These three devices are described together in this chapter because of their similarity, and
are together referred to as the COP888CG/EG/CS. They differ only in the number of
comparators, number of timers, amount of RAM, and amount of ROM available.

The types of features available in the COP888 Feature Family are listed below, together
with the quantity or availability of each feature in the COP888CG/EG/CS.

* Program Memory: Mask-programmed ROM, 4K bytes (CG and CS) or 8K bytes
(EG)

» Data Memory: Static RAM, 192 bytes (CG and CS) or 256 bytes (EG)
* S-Register Data Memory Extension: Yes

* 16-Bit Programmable Timers: Timer T1, Timer T2 (CG and EG only), Timer T3
(CG and EG only)

* IDLE Mode and Timer: Yes

¢ Multi-Input Wakeup/Interrupt: Yes

* Watchdog and Clock Monitor: Yes

e NMI Interrupt: No

* UART: Yes

¢ Comparator: One (CS) or Two (CG and EG)
* A/D Converter: No

Several versions of the COP888CG/EG/CS are available that operate over different
voltage and temperature ranges. Refer to the appropriate data sheet for more specific
information.

This chapter describes the device-specific features of the COP888CG/EG/CS. Information
that applies to all COP888 Feature Family members is not provided in this chapter, but
is available in the earlier chapters of this manual.

COP888CG/EG/CS 11-1

11.2 BLOCK DIAGRAMS

Figure 11-1 is a block diagram showing the basic functional blocks of the COP888CG.
The CPU core consists of an Arithmetic Logic Unit (ALU) and a set of CPU core registers.
Various functional blocks of the COP888 device communicate with the core through an

internal bus.

/0 PORTS

plifclafL

uC 8 BIT CORE
CLOCK MODIFIED HARVARD
HALT ARCHITECTURE
IDLE
WAKEUP :
RESET :
16 BIT MICRO ngﬂg

TIMER WIRE/

TIMER
| INTERRUPT | ™ PLUS To

WATCH
DOG

UART

COMPARATOR

INPUTS

16 BIT

TIMER
T2

INSTR
DECODE B
LOGIC X

16 BIT
TIMER
T3

4K
BYTES
ROM

192
BYTES
RAM

MULTI
INPUT
WAKEUP

SP
PSW

ICNTRL
CNTRL

ADDR
REG

S

CPU REGISTERS

Figure 11-1 COP888CG Block Diagram

8cg_blk

This block diagram also applies to the COP888EG with one exception. The COPS88EG

has more memory (8K bytes ROM and 256 bytes RAM) than the COP888CG.

Figure 11-2 is a block diagram showing the basic functional blocks of the COP888CS. The
COP888CS is identical to the COP888CG except it has one general-purpose timer (T1)
rather than three, and has one comparator rather than two.

11-2 COP888CG/EG/CS

uC 8 BIT CORE :
CF';E‘E:TK MODIFIED HARVARD ‘ 1/0 PORTS
pay ARCHITECTURE » o[[c]e] L
WAKEUP ;
RESET S " Tear
‘:‘IGMEIE “Cv'%“é? IDLE WATCH UART | | COMPARATOR
T1 PLUS TIMER DOG INPUTS
| INTERRUPT I o

INSTR
DECODE B
LOGIC X

SP
PSW
ICNTRL
CNTRL
S

4K 192 MULTI
BYTES BYTES INPUT
ROM RAM WAKEUP

A

ADDR
REG

CPU REGISTERS 8cs_blk

Figure 11-2 COP888CS Block Diagram

11.3 DEVICE PINOUTS/PACKAGES

The COP888CG/EG/CS are available in 28-pin DIP, 28-pin SO, 40-pin DIP and 44-pin
PLCC packages. Figure 11-3 shows the COP888CG/EG/CS device package pinouts.

Refer to the COP88CG, COP88EG and COP888CS data sheets for more detailed package
information.

11.4 PIN DESCRIPTIONS

The COP888CG/EG/CS has four dedicated function pins: Ve, GND, CKI, and RESET.
Ve and GND function as the power supply pins. RESET is used as the master reset
input, and CKI is used as a dedicated clock input. All other pins are available as general
purpose inputs/outputs or as defined by their alternate functions. For each device pin,
Table 11-1 lists the pin name, pin type (Input or Output), alternate function (where
applicable), and device pin number for the available package types. This table is valid for
the COP888CG, COP888EG, and COP888CS, except that the alternate functions related
to Timer T2, Timer T3, and Comparator 2 do not apply to the COP888CS.

COP888CG/EG/CS 11-3

Figure 11-3 Device Package Pinouts

6885885883 c“'si
6 5 4 3 2 1 4443424140
cki—| 7 39}—Go
Voc—] 8 38|—RESET
o—] o 37}—GND
n—j10 36—D7
12— 11 44-PIN 35|—D6
13—]12 pLCC 34}—Ds5
14— 13 33}—pa
15— 14 32}—Db3
16— 15 31}—Db2
i7—{16 30[—D1
Lo—{17 29— DO
18 19 2021 22 23 24 25 26 27 28
39238863499 N
\J
G4 — 1 28— G3
Gs — 2 27|—G2
Ge — 3 26— G1
G7 —| 4 25— GO
ckl— s 24— RESET
Vee —| 6 23— GND
— 28-PIN |
10 7 2 22|— D3
n—s SO 21|— D2
2— 9 20— D1
13— 10 19— Do
Lo— 1 18}— L7
L1 — 12 17— L6
L2 — 13 16 |— L5
3 — 14 15 |— L4
11-4 COP888CG/EG/CS

ca—| 1 ~ w0 |-
C3— 2 39 |—
G4— 3 38 —
G5—1 4 37 |—
G6—] 5 36 |—
Gg7—] 6 35 | —
CKI— 7 34 |—
Vee —] 8 40PN |
10— 9 oiP 32 —
I1—(10 31—
12— 30 —
13—{12 29 —
14—13 28 —
15—]14 27 —
16—}15 26 —
17—16 25 —
Lo—{17 24 —
L1—]18 23 —
L2—]19 22 —
L3—20 21 |—
8cs_pinout

c1
co

G3

G2

G1

GO
RESET
GND
D7

D6

D5

D4

D3

D2

D1

DO

L7

L6

L5

L4

Table 11-1 COP888CG/EG/CS Pinouts

Pin Alternate 28-Pin | 40-Pin | 44-Pin
Name | WYPe Function |DIP/SO| DIP | PLCC
L0 1/0 MIWU 11 17 17
L1 1/0 MIWU or CKX 12 18 18
L2 1/0 MIWU or TDX 13 19 19
L3 1/0 MIWU or RDX 14 20 20
L4 1/0 MIWU or T2A* 15 21 25
L5 1/0 MIWU or T2B* 16 22 26
L6 1/0 MIWU or T3A* 17 23 27
L7 1/0 MIWU or T3B* 18 24 28
GO 1/0 INT 25 35 39
G1 WDOUT 26 36 40
G2 1/0 T1B 27 37 41
G3 1/0 T1A 28 38 42
G4 1/0 SO 1 3 3
G5 1/0 SK 2 4 4
G6 I SI 3 5 5
G7 /CKO |HALT RESTART | 4 6 6
DO 0 19 25 29
D1 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32
10 I 7 9 9
I I COMP1IN- 8 10 10
12 I COMP1IN+ 9 11 11
13 I COMP10UT 10 12 12
4 1 COMP2IN—* 13 13
5 I COMP2IN+* 14 14
16 I COMP20UT* 15 15
7 I 16 16
D4) 29 33
D5 0 30 34
D6 0 31 35
D7 0 32 36

COP888CG/EG/CS

11-5

Table 11-1 COP888CG/EG/CS Pinouts (Continued)

Pin Type Alternate 28-Pin | 40-Pin | 44-Pin
Name Function DIP/SO | DIP PLCC
Co I/0 39 43
C1 I/0 40 44
C2 I/0 1 1
C3 I/0 2 2
C4 I/0 21
C5 I/0 22
Cé 1/0 23
C7 I/O 24
Vee 6 8 8
GND 23 33 37
CKI 5 7 7
RESET 24 34 38
* Not available on COP888CS

11.5 INPUT/OUTPUT PORTS

The number and types of I/O port pins available on the COP888CG/EG/CS depend on the
package type. The 28-pin packages have Port L, Port G, and a subset of Port D and Port 1.
The 40-pin packages have Port L, Port G, Port D, Port I, and a subset Port C. The 44-pin
packages have a complete set of ports, including all bits of Port L, Port G, Port D, Port I,
and Port C. Refer to Table 11-1 for a detailed list of the available port pins and their
alternate functions.

The general I/O port functions are described in Chapter 7. The COP888CG/EG/CS
device-specific port functions and alternate functions are described briefly below.
Detailed information on using the port pins can be found in Chapter 7, or in the section
describing the specific alternate functions of the port pins.

Port C, a general-purpose bidirectional I/O port, is present in COP888CG/EG/CS 44-pin
packages and partially available (pins 0-3) in 40-pin packages. There are three memory
locations associated with this port: one each for the data register, for the configuration
register, and for reading the port pins directly. There are no alternate functions
associated with this port.

Port D, a general-purpose dedicated output port, is present in all COP888CG/EG/CS
devices, although the 28-pin package only has pins 0-3 available. There is one memory
location associated with this port, which is used for accessing the port data register. Port
D output pins can be individually set to a logic high or low by writing a one or zero,
respectively, to the associated data register bits. To avoid placing the device into a special
testing mode, the hardware design should ensure that D2 is not pulled low during a reset.

Port G, a bidirectional I/O port, is present in all COP888CG/EG/CS devices. There are
three memory locations associated with this port: one each for the data register, for the

11-6 COP888CG/EG/CS

configuration register, and for reading the port pins directly. All Port G pins have Schmitt
triggers on their inputs. Pins GO and G2 through G5 can be used as general purpose I/Os
or for the alternate functions listed below.

GO0 INTR (External Interrupt Input)

G2 Ti1B (Timer T1B Input)

G3 T1A (Timer T1A Input/Output)

G4 SO (MICROWIRE/PLUS Serial Output)
G5 SK (MICROWIRE/PLUS Serial Clock)

Pin G1 is a dedicated Watchdog output that can be used to reset the device in the event
of a Watchdog or Clock Monitor error. This pin can not be used a general purpose input
or output, and should be left unconnected if not used to signal an error condition. Pin G6
can be used as a general purpose input or for the alternate function SI (MICROWIRE/
PLUS Serial Input). This pin can not be used as a general purpose output. Pin G7 is a
dedicated clock output (CKO) with the crystal oscillator mask option selected. This pin
can be used as a general purpose input and HALT/Restart pin with the RC oscillator
mask option selected.

Port I, a general-purpose dedicated input port, is present in all COP888CG/EG/CS
devices, although not all eight pins are available in the 28-pin packages. There is one
memory location associated with this port, which is a read-only address used for reading
the pin values directly. All Port I pins are high-impedance inputs, which must be pulled
to a logic high or low by the external hardware. The alternate functions of pins I1 though
16 are the comparator inputs and outputs. Comparator 2 is not available in 28-pin
packages because the necessary Port I pins are not present in those packages.

Port L, a general-purpose bidirectional I/O port, is present in all COP888CG/EG/CS
devices. There are three memory locations associated with this port: one each for the data
register, for the configuration register, and for reading the port pins directly. This port
can be used for general-purpose I/O or for several alternate functions: the Multi-Input
Wakeup/Interrupt inputs, the UART, Timer T2 (if present) and/or Timer T3 (if present).
The port inputs have Schmitt triggers to support the Multi- Input Wakeup/Interrupt
feature.

11.6 PROGRAM MEMORY

The COP888CG/EG/CS contains 4K (CG/CS) or 8K (EG) bytes of mask-programmed
ROM memory, used for storing application programs and fixed program data. The ROM
occupies the program memory address space starting at 0000 and ending at OFFF or
1FFF hex. It is addressed by the 15-bit Program Counter (PC). Emulation devices are
available for developing application programs, as described later in this chapter.

COP888CG/EG/CS 11-7

11.7 DATA MEMORY

The COP888CG/EG/CS contains 192 or 256 bytes of static RAM memory (CG/CS or EG,
respectively), used for temporary data storage. The first 128 bytes of RAM occupy two
segments in the lowest 256-byte data memory space: 112 bytes from 00—-6F Hex for
general-purpose storage, and 16 bytes from FO0 to FF Hex for the memory-mapped device
registers. The remaining RAM, which is used for general-purpose storage, occupies the
bottom of the next 256-byte page of data memory space, starting at 0100 Hex and ending
at 013F or 017F Hex. This higher part of RAM is accessed by writing the value 01 to the
S register, as explained in “Data Segment Extension” on page 2-6.

11.8 REGISTER BIT MAPS

The COP888CG/EG/CS has several 8-bit memory-mapped registers used for controlling
the CPU core, MICROWIRE interface, interrupt interface, timers, and other functions.
In some control registers, multiple register bits are grouped together to control a single
function, or different control bits within a register are used for unrelated control
functions.

Tables 11-2 through 11-13 show the bit maps for these registers. Each bit map shows the
name of the register, the register address, the name of each bit in the register, and a brief
description of each bit. For detailed information on using individual control bits, refer to
the relevant description elsewhere in this manual: CPU core registers (Chapter 2), Timers
(Chapter 4), Watchdog and Clock Monitor (Chapter 8), Multi-Input Wakeup/Interrupt and
Timer T0 (Chapter 6), UART (Section 11.13), or Comparator (Section 11.12).

Table 11-2 T3CNTRL, Timer T3 Control Register (Address xxB6)*

Bit7 | Bit6 | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
T3C3 | T3C2 | T3Cl1 | T3CO | T3PNDA T3ENA T3PNDB T3ENB

T3PNDA: Timer T3 interrupt A pending flag
T3ENA: Timer T3 interrupt A enable bit
T3PNDB: Timer T3 interrupt B pending flag
T3ENB: Timer T3 interrupt B enable bit

*COP888CG and COP88S8EG only.

11-8 COP888CG/EG/CS

Table 11-3 CMPSL, Comparator Select Register (Address xxB7)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused | CMP20OE* | CMP2RD* | CMP2EN* | CMP1OE | CMP1RD | CMP1EN | Unused
CMP20OE: Comparator 2 output enable bit (Pin 16)

CMP2RD: Comparator 2 read-only result bit
CMP2EN: Comparator 2 enable bit (Pins I4 and I5)
CMP10E: Comparator 1 output enable bit (Pin 13)
CMP1RD: Comparator 1 read-only result bit
CMP1EN: Comparator 1 enable bit (Pins I1 and I2)
* COP888CG and COPSSEG only. Reserved on COP888CS.
Table 11-4 ENU, UART Control and Status Register (Address xxBA)

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit2 | Bit1l Bit 0

PEN | PSEL1 XBIT9/PSELO CHL1 | CHLO | ERR | RBFL | TBMT
PEN: Parity enable bit
PSEL1: Parity selection bit (with PSELO)

XBIT9/PSELO: Transmit bit 9 / Parity selection bit (with PSEL1)
CHL1-CHLO: Frame format selection bits (number of data bits)
ERR: Error flag (data overrun, framing, or parity error)
RBFL: Receive buffer full flag

TBMT: Transmit buffer empty flag

COP888CG/EG/CS 11-9

Table 11-5 ENUR, UART Receive Control and Status Register (Address xxBB)

Bit 7 Bit6 | Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
DOE FE PE Reserved RBIT9 ATTN XMTG RCVG

DOE: Data Overrun Error flag

FE: Framing Error flag

PE: Parity Error flag

RBIT9: Receive bit 9 (when 9 bits per frame)

ATTN: Attention mode enable bit

XMTG: Transmitting; reset at end of last frame

RCVG: Receiving; reset when RDX goes high

Table 11-6 ENUI, UART Interrupt and Clock Source Register (Address xxBC)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STP2 STP78 ETDX SSEL XRCLK XTCLK ERI ETI
STP2: Stop bits (0 = 1 Stop bit, 1 = 2 Stop bits)
STP78: Last Stop bit length (0 = 1 bit, 1 = 7/8 bit)
ETDX: Enable TDX transmit pin
SSEL: Synchronous select bit (0 = asynchronous, 1 = synchronous)
XRCLK: External Receive Clock (0 = internal, 1 = external clock)
XTCLK: External Transmit Clock (0 = internal, 1 = external clock)
ERI: Enable Receive Interrupt
ETI: Enable Transmit Interrupt
Table 11-7 BAUD, UART Baud Register (Address xxBD)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BRD7 BRD6 BRD5 BRD4 BRD3 BRD2 BRD1 BRDO

BRD7-BRD0: Baud rate divisor (with PSR register)

11-10 COP888CG/EG/CS

Table 11-8 PSR, UART Prescaler Select Register (Address xxBE)

Bit 7 Bit 6 ‘Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PSR4 PSR3 PSR2 PSR1 PSRO BRD10 BRD9 BRDS8
PSR4-PSRO: Baud rate prescaler
BRD10-BRDS: Baud rate divisor (with BAUD register)
Table 11-9 T2CNTRL, Timer T2 Control Register (Address xxC6)
Bit7 | Bit6 | Bit5 | Bit4 Bit 3 Bit 2 Bit 1 Bit 0
T2C3 | T2C2 | T2C1 | T2C0 | T2PNDA T2ENA T2PNDB T2ENB
T2C3-T2C2-T2C1-T2C0: Timer T2 control bits
T2PNDA: Timer T2 interrupt A pending flag
T2ENA: Timer T2 interrupt A enable bit
T2PNDB: Timer T2 interrupt B pending flag
T2ENB: Timer T2 interrupt B enable bit
Table 11-10 WDSVR, Watchdog Service Register (Address xxC7)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
WS1 WSO0 KEY4 KEY3 KEY2 KEY1 KEYO CMEN
WS1-WSo0: Watchdog Window Select bits

KEY4-KEY0: Watchdog Key Data (01100)
CMEN: Clock Monitor Enable bit

COP888CG/EG/CS 11-11

Table 11-11 ICNTRL, Interrupt Control Register (Address xxE8)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused | LPEN | TOPND | TOEN | uWPND | uWEN | T1PNDB | T1ENB
LPEN: Port L Interrupt Enable bit (Multi-Input Wakeup/Interrupt)
TOPND: Timer TO (IDLE Timer) interrupt pending flag
TOEN: Timer TO (IDLE Timer) interrupt enable bit
uWPND: MICROWIRE interrupt pending flag
uWEN: MICROWIRE interrupt enable bit
T1PNDB: Timer T1 interrupt B pending flag
T1ENB: Timer T1 interrupt B enable bit

Table 11-12 CNTRL, Control Register (Address xxEE)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1C3 T1C2 T1C1 T1CO MSEL IEDG SL1 SLO
T1C3-T1C2-T1C1-T1CO: Timer T1 control bits
MSEL: MICROWIRE Select bit
IEDG: External Interrupt Edge selection bit
SL1-SLO: MICROWIRE clock divide-by selection bits

Table 11-13 PSW, Processor Status Word Register (Address xxEF)
Bit7 | Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

HC C T1PNDA T1ENA EXPND BUSY | EXEN GIE
HC: Half-Carry bit
C: Carry bit
T1PNDA: Timer T1 interrupt A pending flag
T1ENA: Timer T1 interrupt A enable bit
EXPND: External interrupt pending flag
BUSY: MICROWIRE Busy flag
EXEN: External interrupt enable bit
GIE: Global Interrupt Enable

11-12 COP888CG/EG/CS

11.9 MEMORY MAP

Table 11-14 is a memory map showing the organization of the data memory and the
specific memory addresses of the COP888CG/EG/CS registers, including all RAM, 1/0
ports, port registers, and control registers. For purposes of upward compatibility, do not
allow the software to access any address that is designated “Reserved” in the table. The
COP888CS does not have Timer T2 or T3, so the register addresses associated with those
timers are not used, and should be considered “Reserved.”

Table 11-14 COP888CG/EG/CS Data Memory Map

ADDRESS CONTENTS
0000-006F | RAM (112 bytes general-purpose data memory)
0070-007F | Unused address space .
xx80—xxAF | Unused address space
xxB0 Timer T3 lower byte
xxB1 Timer T3 upper byte
xxB2 Timer T3 autoload register T3RA lower byte
xxB3 Timer T3 autoload register TSRA upper byte
xxB4 Timer T3 autoload register T3RB lower byte
xxB5 Timer T3 autoload register TSRB upper byte
xxB6 Timer T3 control register, TSCNTRL
xxB7 Comparator select register, CMPSL
xxB8 UART transmit buffer, TBUF
xxB9 UART receive buffer, RBUF
xxBA UART control and status register, ENU
xxBB UART receive control and status register, ENUR
xxBC UART interrupt and clock source register, ENUI
xxBD UART baud register, BAUD
xxBE UART prescaler select register, PSR
xxBF Reserved
xxC0 Timer T2 lower byte
xxC1 Timer T2 upper byte
xxC2 Timer T2 autoload register T2RA lower byte
xxC3 Timer T2 autoload register T2RA upper byte
xxC4 Timer T2 autoload register T2RB lower byte
xxC5 Timer T2 autoload register T2RB upper byte
xxC6 Timer T2 control register, T2CNTRL
xxC7 Watchdog service register, WDSVR
xxC8 Multi-Input Wakeup edge select register, WKEDG
xxC9 Multi-Input Wakeup enable register, WKEN
xxCA Multi-Input Wakeup interrupt pending register, WKPND
xxCB—xxCF | Reserved

COP888CG/EG/CS 11-13

Table 11-14 COP888CG/EG/CS Data Memory Map (Continued)

ADDRESS CONTENTS

xxDO0 Port L data register, PORTLD
xxD1 Port L configuration register, PORTLC
xxD2 Port L input pins (read only), PORTCP
xxD3 Reserved
xxD4 Port G data register, PORTGD
xxD5 Port G configuration register, PORTGC
xxD6 Port G input pins (read only), PORTGP
xxD7 Port I input pins (read only), PORTI
xxD8 Port C data register, PORTCD
xxD9 Port C configuration register, PORTCC
xxDA Port C input pins (read only), PORTCP
xxDB Reserved
xxDC Port D data register, PORTD
xxDD—xxDF | Reserved
xxE0-xxE5 | Reserved
xxE6 Timer T1 autoload register T1RB lower byte
xxE7 Timer T1 autoload register T1RB upper byte
xxE8 Interrupt control register, ICNTRL
xxE9 MICROWIRE serial I/O shift register, SIO
xxEA Timer T1 lower byte
xxEB Timer T1 upper byte
xxEC Timer T1 autoload register TIRA lower byte
xxED Timer T1 autoload register T1RA upper byte
xxEE Control register, CNTRL
xxEF Processor Status Word register, PSW
xxF0—xxFB | General-purpose memory-mapped registers
xxFC X pointer register
xxFD SP (Stack Pointer) register
xxFE B pointer register
xxFF S (data segment extension) register
0100-013F | RAM (COP888CG/CS, additional 64 bytes)
0100-017F | RAM (COP888EG, additional 128 bytes)

The COP888CG/EG/CS contains general-purpose RAM at addresses above 00FF Hex.
The S register is used for designating the high-order byte of the RAM address. Registers
and memory residing in the top half of the 256-byte memory space (80-FF Hex) can
always be accessed, regardless of the value in the S register. For more information on this
subject, see “Data Segment Extension” on page 2-6.

11-14 COP888CG/EG/CS

11.10 RESET
Upon reset of the COP888CG/EG/CS, the ports and registers are initialized as follows:

Port C data register, PORTCD:

Port C configuration register, PORTCC:
Port D data register, PORTD:

Port G data register, PORTGD:

Port G configuration register, PORTGC:
Port L data register, PORTLD:

Port L configuration register, PORTLC:
Processor Status Word, PSW:

Control register, CNTRL:

Interrupt control register, ICNTRL:
Global Interrupt Enable flag, GIE:

Software Trap interrupt pending flag, STPND:

MICROWIRE shift register, SIOR:

Timer T2 control register, T2CNTRL:
Timer T3 control register, T3SCNTRL:
Timer T1, T2 and T3 reload registers:

Accumulator and Timers T1, T2, T3:

Program Counter, PC:
SP (Stack Pointer) register:

B pointer register:

X pointer register:

S register:

Multi-Input Wakeup edge select register,
WKEDG:

Multi-Input Wakeup enable register, WKEN:

00
00
FF
00
00
00
00
00
00
00
Cleared
Cleared

Upon power-up reset, unknown.
Upon external reset, unchanged.

00
00

Upon power-up reset, unknown.
Upon external reset, unchanged.

Upon power-up reset, unknown.
Upon external reset, unknown
(with crystal oscillator option) or
unchanged (with RC oscillator
option).

00
6F

Upon power-up reset, unknown.
Upon external reset, unchanged.

Upon power-up reset, unknown.
Upon external reset, unchanged.

00

00
00

COP888CG/EG/CS 11-15

Multi-Input Wakeup interrupt pending regis-

ter, WKPND: Unknown

Watchdog service register, WDSVR: D9

RAM (other than FC-FF): Upon power-up reset, unknown.
Upon external reset, unchanged.

Comparator select register, CMPSL: 00

UART control and status register, ENU: 01

UART receive control and status register,

ENUR: 00

UART interrupt and clock source register,

ENUL 00

UART baud register, BAUD: Upon power-up reset, unknown.
Upon external reset, unchanged.

UART prescaler select register, PSR: 00

11.11 INTERRUPTS

Table 11-15 shows the types of interrupts in the COP888CG/EG/CS, the interrupt
arbitration ranking, and the locations of the corresponding interrupt vectors in the vector
table. The COP888CS does not have Timer T2 or T3, so the interrupts associated with
those timers should be considered “Reserved.” For basic information on COP888
interrupts, see Chapter 3.

Each COP888CG/EG/CS device has at least one on-chip comparator. A comparator is a
circuit that compares the analog input voltages applied to two input pins, and determines
which voltage is higher. A memory mapped-register is used for controlling the
comparator and for reading the results. The results can also be placed on a device output,
if desired.

Every COP888CG/EG/CS device has one comparator, designated Comparator 1. Each
COP888CG or COP888EG device supplied in a 40-pin or 44-pin package has an
additional comparator, designated Comparator 2.

Two input pins are associated with each comparator, called the negative and positive
inputs. If the voltage on the positive input is higher than the voltage on the negative pin,
then the output result is “true” or logic 1. If the voltage on the negative input is higher,
then the result is “false” or logic 0. The current result of a comparison is written to the
read-only result bit of the comparator select register. If the comparator's output pin is
enabled, the current result of the comparison is placed on an output pin as a logic 1 or 0,
making the comparison result available to the external circuit.

11-16 COP888CG/EG/CS

Table 11-15 COP888CG/EG/CS Interrupt Rank and Vector Addresses

Arbitration Rank | Interrupt Description | Vector Address*

1 Software Trap (INTR) 01FE-01FF

2 (Reserved) 01FC-01FD

3 External Interrupt Pin GO 01FA-01FB

4 IDLE Timer Underflow 01F8-01F9

5 Timer T1A/Underflow 01F6-01F7

6 Timer T1B 01F4-01F5

7 MICROWIRE/PLUS 01F2-01F3

8 (Reserved) 01F0-01F1

9 UART Receive 01EE-01EF

10 UART Transmit 01EC-01ED

11 Timer T2A/Underflow 01EA-01EB

12 Timer T2B 01E8-01E9

13 Timer T3A/Underflow 01E6-01E7

14 Timer T3B 01E4-01E5

15 Port L / Wakeup 01E2-01E3

16 Default VIS Interrupt 01E0-01E1
* The location of the vector table depends on the location of the VIS
instruction. Vector addresses shown in table assume a VIS location
between 00FF Hex and 01DF Hex.

Once enabled, the comparator operates continuously until stopped by the software. The
response time is very fast, typically less than the instruction cycle time. In order to
operate properly, the input voltages must be within a specific range, slightly smaller than
the range from GND to Vc. See the device data sheet for specific values.

The comparator inputs and outputs are alternate functions of Port I. If the comparator
is enabled, the two Port I pins that serve as the comparator inputs will operate in that
capacity rather than as general-purpose port pins. If the comparator output is enabled
along with the comparator, a third Port I pin operates as an output, indicating the
comparison result as a logic 1 (high) or logic 0 (low). The Port I pins and their alternate
functions are listed in Table 11-16.

COP888CG/EG/CS 11-17

Table 11-16 Port I Alternate Functions

Port I Pin Alternate Function

I0 None

I1 COMP1IN- (Comparator 1 negative input)
I2 COMP1IN+ (Comparator 1 positive input)
I3 COMP10UT (Comparator 1 output)

I4 COMP2IN- (Comparator 2 negative input)
15 COMP2IN+ (Comparator 2 positive input)
16 COMP20UT (Comparator 2 output)

17 None

The comparators are controlled by a single memory-mapped register called the CMPSL
(Comparator Select) register, located at address xxB7 Hex. Three bits in the register are
used for each comparator: a comparator enable bit, a comparator-output enable bit, and
a read-only result bit. Upon reset, all bits are cleared and the comparators are disabled.
Setting the comparator enable bit enables operation of the comparator and its two
inputs. Setting the comparator-output enable bit causes the results of the comparison to
be placed on the output pin. Whether or not the output pin is enabled, the comparison
results can be read from the result bit, which is a read-only bit.

The CMPSL register bit map is shown in Table 11-17.
Table 11-17 CMPSL, Comparator Select Register (Address xxB7)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused | CMP20E | CMP2RD | CMP2EN | CMP10E | CMP1RD | CMP1EN | Unused
CMP20E: Comparator 2 output enable bit (Pin 16)

CMP2RD: Comparator 2 read-only result bit
CMP2EN: Comparator 2 enable bit (Pins I4 and I5)
CMP10OE: Comparator 1 output enable bit (Pin I3)
CMP1RD: Comparator 1 read-only result bit
CMP1EN: Comparator 1 enable bit (Pins I1 and 12)

If a comparator is not enabled, the corresponding result bit is read as 0. When writing to
the CMPSL register, it does not matter what bit values are written to the two read-only
result bit positions. The two “unused” bits can serve as read/write software flags, if
desired.

11-18 COP888CG/EG/CS

To reduce power consumption, the comparators should be disabled prior to entering the
HALT or IDLE mode.

11.13 UART

Each COP888CG/EG/CS device has an on-chip Universal Asynchronous Receiver
Transmitter (UART), which can be used for transmitting and receiving data serially,
either synchronously or asynchronously. This full-duplex, double-buffered UART is fully
programmable, and can be configured into a wide variety of operating modes. It offers the
following major features:

* Full-duplex operation

¢ Fully programmable serial interface options, including baud rate, start bit, data
length (7, 8, or 9 bits), parity bit (even/odd, mark, space, or none), and stop bits (7/
8,1,1-7/8, or 2)

e Accurate baud rate generation using the chip clock (no additional crystal neces-
sary)

* Complete status reporting
* Separate interrupt vectors for Receive Buffer Full and Transmit Buffer Empty

* Independent clock inputs for the transmit and receive sections (either internal or
external)

* Asynchronous or synchronous operation
* Receiver Attention mode for better networking capability

* Error detection circuitry and diagnostic self-test capability

11.13.1 UARTO
Figure 11-4 is a block diagram of the COP888CG/EG/CS UART circuit. There are three
major sections to the circuit: the receiver, transmitter, and control sections.

The receiver section receives serial data on the RDX pin. Serial data bits are shifted into
the Receive Shift register, low-order bit first. When a full byte is received, it is transferred
to the receive buffer (RBUF), a memory-mapped register, and the receive buffer full flag
(RBFL) is set. If the UART receiver interrupt is enabled, an interrupt is also generated.
The software routine reads and processes the byte in RBUF.

The transmitter section sends out serial data on the TDX pin. When the transmit buffer
register (TBUF) is empty, the transmit buffer empty flag (TBMT) is set. If the UART
transmitter interrupt is enabled, an interrupt is also generated on the buffer empty
condition. The software then writes the next byte to be transmitted into the transmit
buffer register (TBUF), a memory-mapped register. At the appropriate time, the data
byte is transferred from TBUF into the Transmit Shift register. Serial data bits are
shifted out of the Transmit Shift register on the TDX pin, low-order bit first.

COP888CG/EG/CS 11-19

| WAKE-UP LOGIC f¢—

' RDX

" PE
‘—»l RECEIVE SHIFT REGISTER | DOE

FE
!
d—l RBUF l——{ RBFL }——P INTERRUPT

G—D[TBUF l—i TBMT }-——V INTERRUPT
}

| TRANSMIT SHIFT REGISTER } > TDX

<—>| ENU
I —— »RECV CLOCK
<—>{ ENUR I [~ XMIT CLOCK
CLOCK
‘——’l ENUI l SELECT
l 16T S CKX

—D{F‘RESCALE REGISTERI—’I BAUD REGISTER]
T CKI

888_uart_blk

INTERNAL DATA BUS

Figure 11-4 UART Block Diagram

The software controls the UART using three memory-mapped registers: the Control and
Status Register (ENU), the Receive Control and Status Register (ENUR), and the
Interrupt and Clock Source Register (ENUI). Some bits in these registers are control bits,
while others are status bits. Two more memory-mapped registers are used to select the
basic UART baud clock rate: the Prescaler (PSR) and Baud (BAUD) registers. The clock
source for generating the baud clock can be either the chip clock (CKI) or an external
clock signal received on the CKX pin.

11.13.2 UART Registers

The UART contains seven memory-mapped registers, located in data memory at
addresses xxB8 through xxBE Hex. Three registers (ENU, ENUR, and ENUI) are used
for configuring the UART and two registers (PSR and BAUD) are used for setting the
baud rate. The UART transmitter section contains two linked registers, the Transmit
Buffer (TBUF) and Transmit Shift registers. The UART receiver section also contains
two linked registers, the Receive Shift and Receive Buffer (RBUF) registers. The two
shift registers are not memory mapped, and cannot be accessed directly by the software.

The bit maps for the control and status registers ENU, ENUR, and ENUI, and the baud
selection registers PSR and BAUD, are shown in Tables 11-18 to 11-22.

11-20 COP888CG/EG/CS

Table 11-18 ENU, UART Control and Status Register (Address xxBA)

Bit 7 Bit 6 Bit 5 Bit 4 Bit3 | Bit2 | Bit1l Bit 0
PEN | PSEL1 XBIT9/PSELO CHL1 | CHLO | ERR | RBFL | TBMT

PEN: Parity enable bit (0 = Parity disabled, 1 = Parity Enabled

PSEL1: Parity selection bit (with PSELOQ), as indicated below:

PSEL1-PSELO = 00 Odd parity, if parity is enabled
PSEL1-PSELO = 01 Even parity, if parity is enabled
PSEL1-PSELO = 10 Mark (1), if parity is enabled
PSEL1-PSELO = 11 Space (0), if parity is enabled

XBIT9/PSELO: For nine data bits per frame, this bit is XBIT9, or Transmit Bit 9, the
ninth data bit transmitted. For seven or eight data bits per frame, this
bit serves as PSELO (see PSEL1 above).

CHL1-CHLO: Frame format selection bits (number of data bits):
CHL1-CHLO = 00 Eight data bits per frame.
CHL1-CHLO = 01 Seven data bits per frame.
CHL1-CHLO = 10 Nine data bits per frame (using XBIT9, RBIT9).

CHL1-CHLO = 11 Diagnostic Loopback Mode. Transmitter output is
internally looped back to receiver input. Nine-bit framing is used.

ERR: Error flag. Set upon occurrence of any DOE, FE, or PE error.

RBFL: Receive buffer full flag. This bit is set when the UART has received a
complete byte and has copied it into the RBUF register. The bit is reset
automatically when the software reads from the RBUF register.

TBMT: Transmit buffer empty flag. This bit is set when the UART transfers a
byte of data from the TBUF register into the Transmit Shift register
for transmission. The bit is reset automatically when the software
writes into the TBUF register.

COP888CG/EG/CS 11-21

Table 11-19 ENUR, UART Receive Control and Status Register (Address xxBB)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DOE FE PE Reserved RBIT9 ATTN XMTG RCVG
DOE.: Data Overrun Error flag; set by a Data Overrun error, cleared by reading
the ENUR register

FE: Framing Error flag; set by a Framing error, cleared by reading the ENUR
register

PE: Parity Error flag; set by a Parity error, cleared by reading the ENUR reg-
ister

RBIT9: Receive bit 9; ninth data bit received when UART operates with nine bits
per frame

ATTN: Attention mode enable bit, cleared automatically upon receiving a char-
acter with data bit nine set

XMTG: UART transmitting; set to indicate the transmitter is transmitting, reset
at end of last frame

RCVG: UART receiving error; set to indicate a framing error, reset when RDX

goes high

Table 11-20 ENUI, UART Interrupt and Clock Source Register (Address xxBC)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STP2 STP78 ETDX SSEL XRCLK XTCLK ERI ETI
STP2: Number of Stop bits (0 = 1 Stop bit, 1 = 2 Stop bits)
STP78: Last Stop bit length (0 = 1 bit, 1 = 7/8 bit)
ETDX: Enable TDX transmit pin, an alternate function of Port L pin L2 (0 = TDX
pin, 1 = Port L pin).
SSEL: Synchronous select bit (0 = asynchronous, 1 = synchronous)
XRCLK: External Receive Clock; selects clock source for receiver section (0 = inter-
nal baud rate generator clock, 1 = external CKX clock)
XTCLK: External Transmit Clock; selects clock source for transmitter section (0 =
internal baud rate generator clock, 1 = external CKX clock)
ERI: Enable Receive Interrupt (0 = disable, 1 = enable interrupts from the re-
ceiver section)
ETI: Enable Transmit Interrupt (0 = disable, 1 = enable interrupts from the

transmitter section)

11-22 COP888CG/EG/CS

Table 11-21 BAUD, UART Baud Register (Address xxBD)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRD7 BRD6 BRD5 BRD4 BRD3 BRD2 BRD1 BRDO

BRD7-BRDO0: Baud rate divisor (with PSR register)

Table 11-22 PSR, UART Prescaler Select Register (Address xxBE)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PSR4 PSR3 PSR2 PSR1 PSRO BRD10 BRD9 BRDS8
PSR4-PSRO: Baud rate prescaler
BRDA-BRDS8: Baud rate divisor (with BAUD register)

Data Registers

The transmit section contains a pair of linked registers TBUF (Transmit Buffer) and
TSFT (Transmit Shift). The TBUF and TSFT registers double-buffer data for
transmission, with data shifting out low-order bit first from TSFT to the TDX output. The
next byte for transmission is loaded into TBUF by the software while the previous byte
is shifting out of TSFT. The next byte from TBUF is automatically loaded into TSFT once
the previous byte has shifted out. TSFT can not be read or written by the software.

The receive section contains a pair of linked registers RSFT (Receive Shift) and RBUF
(Receive Buffer). The RSFT and RBUF registers double-buffer data being received, with
data shifting in low-order bit first from RDX to the RSFT input. While the next byte is
shifting into RSFT, the previous byte received is read from RBUF by the software. The
next byte from RSFT is automatically loaded into RBUF once the byte has finished
shifting into RSFT. Note that RBUF is a read only register. RSFT can not be read or
written by the software.

Prescaler and Baud Select Registers

The UART baud clock selection is programmed through the two registers PSR (Prescaler
Select) and BAUD (Baud Select). The Prescaler factor is selected by the upper five bits of
the PSR register, while the baud rate divisor is determined by the lower three bits of the
PSR register in conjunction with the eight bits of the BAUD register. This allows an 11-
bit baud rate divisor, ranging from 1 to 2048. Note that the programmed value is equal
to the baud rate divisor minus one, which ranges from 0 to 2047. An all zero prescaler
value is reserved for selecting NO CLOCK.

COP888CG/EG/CS 11-23

Control and Status Registers

The operation of the UART is programmed through the three registers ENU, ENUR and
ENUI. All bits in these registers are cleared as a result of a reset with the exception of
the TBMT (Transmit Buffer Empty) bit in the ENU register which is initialized high.

Several of the bits in the ENU and ENUR registers are read-only and cannot be written
by software. These read-only bits include ERR, RBFL and TBMT in the ENU register
and RBIT9, XMTG, RCVG, DOE, FE and PE in the ENUR register. The DOE, FE and
PE bits of the ENUR register are cleared automatically when the ENUR register is read.
Note that bit manipulation instructions (test bit, set bit, reset bit) or comparison
instructions (if equal, if not equal, if greater than) with the ENUR register do not clear
the error flags. Moreover, a reset bit instruction on the error flag itself does not clear the
error flag, since these error flags are read-only bits.

11.13.3 UART Interface

Port L pins L1, L2, and L3 are used for the UART interface. These three pins are used
for CKX (clock), TDX (transmit), and RDX (receive), respectively. RDX is an inherent
function associated with the L3 pin and requires no setup following reset, except for
ensuring that the associated L3 data register and configuration register bits both remain
reset in order to select L3 as an input. The TDX function is assigned to the L2 pin by
setting the ETDX bit in the ENUI control register and setting the associated L2
configuration bit in order to configure L2 as an output pin. Once the ETDX bit is set, the
associated L2 data register bit may be used as a software flag, since the TDX output from
the Transmit Shift register is connected to the L2 pin directly.

The baud rate clock for the UART can be generated on-chip, or can be selected from an
external source. The L1 pin is used as the external clock I/O pin (CKX) if either the
XTCLK or XRCLK bits in the ENUI control register are set. If neither of these control
bits is set, then L1 serves as a normal I/O pin. The CKX pin can be used as either an input
or output, as determined by the associated L1 configuration register bit. As an input,
CKX represents an external clock input, which may be selected to drive the UART
transmitter and/or receiver. As an output, CKX represents the internal baud rate
generator clock output.

11.13.4 Asynchronous Mode

The asynchronous mode is selected by resetting the SSEL bit to zero in the ENUI
register. The input frequency to the UART is 16 times the baud rate. The Transmit Shift
and TBUF registers double-buffer data for transmission. While the Transmit Shift
register is shifting out the current character on the TDX pin, the TBUF register may be
loaded by software with the next byte to be transmitted. When the Transmit Shift
register finishes transmitting the current character, the contents of TBUF are
transferred to the Transmit Shift register and the Transmit Buffer Empty flag (TBMT in
the ENU register) is set. The TBMT flag is automatically reset by the UART when
software loads a new character into the TBUF register. There is also the XMTG bit,
which is set to indicate that the UART is transmitting. This bit is reset at the end of the
last frame (end of last Stop bit). Figure 11-5 shows the transmitter timing diagram.

11-24 COP888CG/EG/CS

S)
RDX Y
START DATA BITS (7-9) STOP START
)

7

SAMPLE
CLOCK

w

RECEIVE M
C1LéJCK ‘
(BAUD RATE) |

Figure 11-5 UART Transmitter Timing, Asynchronous Mode

888_uart_rece_tim

The Receive Shift and RBUF registers double-buffer data being received. The UART
receiver continually monitors the signal on the RDX pin for a low level to detect the
beginning of a Start bit. Upon sensing this low level, it waits for half a bit time and
samples again. If the RDX pin is still low, the receiver considers this to be a valid Start
bit, and the remaining bits in the character frame are each sampled a single time, at the
mid-bit position. Serial data received on the RDX pin is shifted into the Receive Shift
register. Upon receiving the complete character, the contents of the Receive Shift register
are copied into the RBUF register and the Receive Buffer Full flag (RBFL) is set. RBFL
is automatically reset when software reads the character from the RBUF register. RBUF
is a read-only register. There is also the RCVG bit, which is set high whenever a framing
error occurs. The RCVG bit is reset whenever RDX goes high. TBMT, XMTG, RBFL and
RCVG are read-only bits. Figures 11-6 and 11-7 show the timing diagrams for the
receiver.

The clock source for the transmitter and/or receiver can be selected to come from an
external source (at the CKX pin) or from the internal baud rate generator. If the internal
baud rate generator is used, the internal clock can be output to the CKX pin.

16 x
RECEIVE
CLOCK

4+— 8 CLOCKS —————¥»

SAMPLE _]

CLOCK

888_uart_rece_bit

Figure 11-6 UART Receiver Bit Sampling, Asynchronous Mode

COP888CG/EG/CS 11-25

)

TDX \ /

START DATA BITS (7-9) x PARITY)/ Soaz \
)
N
TRANSMIT n H [ﬂ] m] ﬂ
CLOCK [L ! | ||

1 i

i 1 [
| i i
L] L

)
i [
| jo1

+16 B J’ 5
(BAUD RATE) 7

888_uart_trans

Figure 11-7 UART Receiver Timing, Asynchronous Mode

11.13.5 Synchronous Mode

The synchronous mode is selected by setting the SSEL, XTCLK, and XRCLK bits to all
ones in the ENUI register. In this mode, data is transmitted on the rising edge and
received on the falling edge of the synchronous clock on the CKX pin.

The input frequency to the UART is the same as the baud rate on the CKX pin. If data
transmit and receive are selected with the CKX pin as the clock output, the
microcontroller generates the synchronous clock output at the CKX pin. The internal
baud rate generator is used to produce the synchronous clock. Data transmit and receive
are performed synchronously with this clock through the TDX and RDX pins. Note that
if CKX is selected as an output pin, then the selected clock from the internal Baud Rate
Generator is divided by 2 before being output to the CKX pin. This results in a 50 percent
duty cycle on the CKX clock. Figure 11-8 shows the timing diagram for the synchronous
mode.

SYNCHRONOUS
CLOCK
TRANSMIT
DATA

RECEIVE

DATA

Figure 11-8 UART Synchronous Mode Timing

888_uart_syn

11-26 COP888CG/EG/CS

When an external clock input is selected at the CKX pin, data transmit and receive are
performed synchronously with this clock through the TDX and RDX pins.

11.13.6 Framing Formats

The UART supports several framing formats as shown in Figure 11-9. The format is
selected by writing certain control bits in the ENU and ENUI registers. A framing format
consists of a Start bit followed by seven, eight, or nine data bits (excluding parity),
followed by an optional parity bit, followed by 7/8, 1, 1-7/8, or 2 Stop bits. In applications
using parity, the parity bit is generated and verified by hardware. The optional parity bit
may be selected as either odd or even parity, a mark, or a space. No parity is possible with
the nine-bit format. Note that the 7/8 option, which selects the last Stop bit to be 7/8 of a
bit in length, is independent of whether one or two Stop bits are selected.

The number of data bits (7, 8, or 9) is selected with the CHLO and CHL1 bits in the ENU
register. The first data transmission format shown in Figure 11-9 (1, 1a, 1b, 1c) consists
of a Start bit, seven data bits, an optional parity bit, and 7/8, 1, 1-7/8, or 2 Stop bits. This
format is selected with CHL1 = 0, CHLO = 1.

The second data transmission format (2, 2a, 2b, 2¢) consists of a Start bit, eight data bits,
an optional parity bit, and 7/8, 1, 1-7/8, or 2 Stop bits. This format is selected with CHL1
= 0, CHLO = 0. The optional parity bit with these first two formats is generated and
verified by hardware. The parity bit is enabled or disabled by the PEN (Parity Enable)
bit in the ENU register. If parity is enabled (PEN = 1), the parity selection is made with
the PSELO and PSELI1 bits of the ENU register. The parity selections include odd parity
(PSEL1 = 0, PSELO = 0), even parity (PSEL1 = 0, PSELO = 1), mark (PSEL1 = 1, PSELO
= 0), and space (PSEL1 = 1, PSELO = 1). The mark consists of a 1 bit, while the space
consists of a 0 bit.

The third data transmission format (3, 3a) consists of a Start bit, nine data bits, and 7/8,
1, 1-7/8, or 2 Stop bits. This format is selected with CHL1 = 1, CHLO = 0. Parity is not
generated or verified with this format. The UART Attention mode feature is supported
by this 9-data-bit format. When operating in this format, all eight bits of TBUF and
RBUF are used for data. The ninth data bit is transmitted and received using the two
bits XBIT9 and RBIT9, located in the ENU and ENUR registers, respectively. Note that
RBIT9 is a read-only bit.

The last Stop bit can be programmed to be 7/8 of a bit in length with any of the
transmission formats. If two Stop bits are selected with the 7/8 bit also selected, then the
second Stop bit is 7/8 of a bit in length. The 7/8-bit select (STP78) and the two-Stop-bit
select (STP2) control bits are both located in the ENUI control register.

Note that the XBIT9/PSELO bit located in the ENU register serves two mutually
exclusive functions. This bit programs the ninth bit for transmission when the UART is
operating with the nine-data-bit framing format selected. There is no parity selection
with this framing format. For the other framing formats, XBIT9 is not needed, so this
same bit is defined instead as the PSELO bit, which is used in conjunction with the
PSEL1 bit to select the type of parity (odd, even, mark, space) if parity generation is
enabled.

COP888CG/EG/CS 11-27

1a

1b

ic

2a

2b

2c

3a

11-28 COP888CG/EG/CS

START

AR 7-BIT DATA s

SE‘I‘?T 7-BIT DATA 28

STt 7-BIT DATA PA S

Sg’l‘? T 7-BIT DATA PA 28

SRt 8-BIT DATA s

STaRT 8-BIT DATA 28

SE’.‘? T 8-BIT DATA PA s
SRt 8-BIT DATA PA 2s
S?n? T 9-BIT DATA S
STB"}ET 9-BIT DATA 28

Figure 11-9 UART Framing Formats

888_uart_frame

The framing formats for the receiver only differ from those for the transmitter in the
number of Stop bits required. The receiver requires only one Stop bit in a frame,
regardless of the setting of the Stop-bit selection bits in the ENUI control register. Note
that an implicit assumption is made for full-duplex UART operation that the framing
formats are the same for the transmitter and receiver.

11.18.7 Reset Initialization

All bits in the UART Control and Status registers ENU, ENUR, and ENUI are cleared
as a result of RESET, with the exception of the TBMT (Transmit Buffer Empty) bit in the
ENU register, which is initialized high.

The PSR register is cleared as a result of RESET, while the Transmit Shift register is
initialized high to all ones. The reason for initializing the Transmit Shift register high is
to provide a high-to-low transition on the TDX output to signify a start bit once the UART
has started. Note that the Transmit Shift and Receive Shift registers are non-
addressable registers, while the RBUF register is a read-only register.

The TBUF, RBUF, Receive Shift, and BAUD registers are not initialized with RESET.

11.13.8 HALT/IDLE Mode Reinitialization

The UART is initialized as a result of reset and is initialized again whenever the
microcontroller enters the HALT or IDLE mode. Note that a HALT or IDLE mode
reinitialization is a subset of the RESET initialization, in that much of the UART control
selection (baud rate, framing format, etc.) is left unchanged following HALT or IDLE.

The HALT/IDLE mode reinitialization is the same as the reset initialization described
above, with the exception of the three UART control and status registers ENU, ENUR,
and ENUI. All of the read/write bits in these three registers are left unchanged as a
result of HALT/IDLE mode reinitialization. The read-only bits ERR, RBFL, DOE, FE,
PE, RBIT9, XMTG, and RCVG are cleared as a result of the HALT/IDLE mode
reinitialization, while the TBMT (Transmit Buffer Empty) read-only bit is initialized
high.

In summary, the HALT/IDLE mode reinitialization is identical to the reset initialization,
with the exception of the read/write bits in the ENU, ENUR, and ENUI registers. These
read/write bits are cleared with reset initialization, but are left unchanged with HALT/
IDLE mode reinitialization.

The microcontroller may exit from the HALT/IDLE mode when the Start bit of a
character is detected at the RDX input (pin L3 of Port L). This feature is activated by
using the Multi-Input Wakeup selected for pin L3. Note that the COP888 microcontroller
also exits the IDLE mode whenever the thirteenth bit of the IDLE counter (T0) toggles.

The application program must set up the RDX Start bit wakeup on pin L3 before entering
the HALT/IDLE mode. This section of the program consists of the following steps:

RBIT 3, WKEN
SBIT 3, WKEDG
RBIT 3, WKPND

COP888CG/EG/CS 11-29

SBIT 3, WKEN

The Wakeup trigger condition for an RDX start bit is programmed as a high-to-low
transition by setting bit 3 of the WKEDG register. Bit 3 of the WKPND register is cleared
to eliminate any previous RDX transition still pending, followed by setting bit 3 of the
WKEN register to enable the Wakeup.

If a crystal or resonator closed loop oscillator is used with the microcontroller, the IDLE
timer (TO0) is used to generate a fixed delay following the HALT mode. Crystals and
resonators require a certain amount of startup time to reach full amplitude and
frequency stability. The fixed delay from the IDLE timer following HALT is necessary to
ensure that the oscillator has indeed stabilized before the microcontroller is allowed to
execute program code. The program must consider this fixed delay when a UART data
transfer is expected immediately following the HALT mode.

11.13.9 Baud Clock Generation

The clock inputs to the transmitter and receiver sections of the UART can be individually
selected to come from either an external source on the CKX pin (pin L1 of the Port L) or
a source selected by dividing the CKI clock by the Baud Rate Generator. The Baud Rate
Generator consists of the PSR (prescaler) and BAUD registers along with the associated
selection circuitry. The clock input selection for the UART Transmitter and Receiver
sections is shown in Figure 11-10. The selection of CKX versus BRG (Baud Rate
Generator) is programmed using the XTCLK and XRCLK bits in the ENUI control
register. Tables 11-23 and 11-24 show the UART clock source selection relative to the
XTCLK and XRCLK bits for the Asynchronous and Synchronous modes, respectively. The
PSR and BAUD registers are memory mapped at data memory address locations xxBE
and xxBD Hex, respectively.

Table 11-23 UART Clock Sources (Asynchronous Mode)

XTCLK | XRCLK | “Grock | CLOCK | PIN
0 0 BRG BRG | Normal I/O
0 1 BRG CKX CKX 1/O
1 0 CKX BRG CKX /O
1 1 CKX CKX CKX I/O

Table 11-24 UART Clock Sources (Synchronous Mode)

TRANSMIT | RECEIVE | L1
XTCLK | XRCLK | "y 0cK | CLOCK | PIN
1 1 CKX CKX | CRKXI/O

11-30 COP888CG/EG/CS

. PORTL
........ f L1
CONFIG BIT
: L1 PIN
CKX | - . (CKX)
™ «—] MUX | gra | paTaBIT [EN
RX — 7 MUX v
A TRI-STATE
XTCLK i SELA
UART ? BUFFER
okx || -
MUX
2:1 |, BRG BRG XTCLK
+ 1 (Asyn)
T 2 Sm) XRCLK
+10R XRCLK T
+16 SSEL
sg&t. BAUD PRESCALE
RATE 5BITS
SELECT | +1T0 le CKI
11 BITS +16
UART
CELL

888_uart_clk_blk

Figure 11-10 UART Baud Clock Generation Block Diagram

CKX I/O in Tables 11-23 and 11-24 means that the L1 pin can be configured as either an
input or an output. With L1 configured as an input, an external clock can be used for the
transmitter and/or receiver. With L1 configured as an output, the BRG clock is routed to
the L1 pin, from where the BRG clock can be selected as the CKX clock for the
transmitter and/or receiver. This is the data path used in the Synchronous mode to route
the BRG clock (divided by 2) to the UART.

The selected internal Baud Rate Generator clock (BRG) can be output to the CKX pin in
both the Asynchronous and Synchronous modes. In the Synchronous mode, the selected
internal BRG clock is divided by two before it is output to the CKX pin. The division by
two is necessary to obtain an output CKX clock with a 50 percent duty cycle. Note also
that integer prescaler values (no fractional values such as 2.5) are necessary in the
Synchronous mode to produce a 50 percent duty cycle output CKX clock. The CKX pin
can also be selected as an external clock input for both the Synchronous and
Asynchronous modes. In the Synchronous mode, both the XTCLK and XRCLK clock
select bits should be set high to a “1” as shown in Table 11-24.

As an example of UART clock selection, consider the Asynchronous mode with XTCLK =
0 and XRCLK = 1 as selected from Table 11-23. The transmitter is clocked from the
internal Baud Rate Generator (BRG), while the receiver is clocked from the CKX pin,
which may be sourced from either an external clock input or from the BRG. Pin L1 is

COP888CG/EG/CS 11-31

dedicated for the CKX clock whenever the CKX clock is selected. The pin L1 configuration
bit determines whether a selected CKX clock is an input from an external source or an
output from the BRG. This configuration bit is set to select the CKX pin L1 as an output
and is reset to select CKX as an external input. Note that both the transmitter and
receiver are clocked from BRG when the CKX pin is selected as an output.

In the Asynchronous mode, the UART divides the clock by 16, regardless of whether the
clock is selected from BRG or CKX. In the Synchronous mode, the UART divides the CKX
clock by 1. Note, however, that if the CKX clock is selected as an output clock in the
Synchronous mode, then the CKX clock will result from the selected BRG clock divided
by 2 as shown in Figure 11-10. Consequently, a selected BRG clock in the Synchronous
mode is divided by 2 before it reaches the UART by way of CKX.

Internally, the basic baud clock is created from the CKI input oscillator frequency
through a two-section divider chain. This divider chain consists of a five-bit prescaler
ranging from 1 to 16 in increments of 0.5, coupled with an eleven-bit binary counter. The
division factors are specified through two registers, PSR (Prescaler Select) register and
BAUD (Baud Select) register, as shown in Figure 11-11. Note that the 11-bit Baud Rate
Divisor spills over from the BAUD register into the PSR Prescaler Select register.

PSR e —_,{
BAUD REGISTER
l‘—BIT . PRESCALER REGISTER BITO BIT7 BITo

4 3 2 1 0 10 9 8 7 6 5 4 3 2 1 0

< PRESCALER .
SELECT e BAUD RATE DIVISOR »

888_uart_reg

A

Figure 11-11 UART Baud Clock Divisor Registers

The Prescaler factor is selected by the upper five bits of PSR, while the baud rate divisor
is determined by the lower three bits of PSR in conjunction with the eight bits of BAUD.
This allows an eleven-bit baud rate divisor, ranging from 1 to 2048. Note that the
programmed value is equal to the baud rate divisor minus one, which ranges from 0 to
2047. An all-zero prescaler value is reserved for selecting NO CLOCK. The NO CLOCK
condition is the UART Power Down mode where the UART clock is turned off to save
power. The application program must also turn off the UART clock when selecting a
different baud rate.

Note that many features of the UART are disabled when the NO CLOCK option is
selected. Consequently, even when an external CKX clock is being used for both the
UART transmitter and receiver, the NO CLOCK option should not be used when any of
the parity, 7/8 stop bit, Synchronous mode, 7 data bit, or Loopback Diagnostic mode
options are selected.

The correspondence between the 5-bit Prescaler Select and the Prescaler factors is shown
in Table 11-25. There are many different ways to calculate the two division factors
(Prescaler and Baud Rate Divisor). One effective method is to achieve a 1.8432-MHz
frequency coming out of the Prescaler. One possible method of producing this 1.8432-
MHz frequency is to select a 9.216 MHz CKI oscillator clock rate coupled with a prescaler

11-32 COP888CG/EG/CS

selection of a divide-by-five factor. The 1.8432 MHz prescaler output is then used to drive
the software programmable baud rate counter to produce an X16 clock for the following
baud rates: 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600, 19200,
and 38400. These baud rates, together with their associated Baud Rate Division factors,
are shown in Table 11-26. Note that Table 11-26 actually contains the baud rate divisor
minus one (N-1) associated with each baud rate, where N is the baud rate divisor. The
value (N-1) from Table 11-26 is the value to be programmed in the 11-bit baud rate
counter (lower 3 bits of PSR and 8 bits of BAUD). The X16 clock is then divided by 16 in
the UART (Asynchronous mode only) to provide the clocks for the serial shift registers of
the UART transmitter and receiver.

Table 11-25 UART Prescaler Factors

Prescaler Select Prescaler Factor
00000 NO CLOCK
00001 1
00010 1.5
00011 2
00100 2.5
00101 3
00110 3.5
00111 4
01000 4.5
01001 5
01010 5.5
01011 6
01100 6.5
01101 7
01110 7.5
01111 8
10000 8.5
10001 9
10010 9.5
10011 10
10100 10.5
10101 11
10110 11.5
10111 12
11000 12.5
11001 13
11010 13.5
11011 14
11100 14.5
11101 15

COP888CG/EG/CS 11-33

Table 11-25 UART Prescaler Factors

Prescaler Select

Prescaler Factor

11110
11111

15.5
16

Table 11-26 UART Baud Rate Divisors, 1.8432 MHz Prescaler Output

Baud Baud Rate Divisor
Rate Minus One (N-1)

110 (110.03) 1046

134.5 (134.58) 855

150 767

300 383

600 191

1200 95

1800 63

2400 47

3600 31

4800 23

7200 15

9600 11

19200 5

38400 2

The entries in Table 11-26 assume a prescaler output of 1.8432 MHz.

Example 1

This example further clarifies the usage of Tables 11-25 and 11-26 in selecting a desired
baud rate. Consider a CKI clock frequency of 4.608 MHz with the UART Asynchronous
mode selected, and suppose a baud rate of 19200 is desired. If a prescaler output frequency
of 1.8432 MHz is selected in order to use Table 11-26, then 4.608 divided by 1.8432 yields
a prescaler factor of 2.5 which is an available entry in Table 11-25. For a baud rate of 19200,
the corresponding entry in Table 11-26 is 5. This means a value of 5 should be programmed
as the value in the 11-bit counter (lower 3 bits of PSR and 8 bits of BAUD) to select a baud
rate divisor of 6. Consequently, N = 6 where N is the baud rate divisor corresponding to
19200 baud, and N-1 = 5 is the value from Table 11-26 to be programmed in the 11-bit
counter. A value of 00100 would be programmed as the prescaler value in the upper 5 bits

11-3¢ COP888CG/EG/CS

of PSR to match the prescaler factor of 2.5 from Table 11-25. The baud rate of 19200 can be
calculated as the prescaler output frequency (1.8432 MHz) divided by 16 times the baud
rate divisor of 6. The divide by 16 results from the UART input frequency being 16 times
the baud rate in the Asynchronous mode. Note that in the Synchronous mode, this division
factor of 16 is replaced by a division factor of 2.

The actual baud rate (BR) may be calculated as follows:
BR = CKIF/(16 x P x N)

where CKIF is the CKI input oscillator frequency, P is the prescaler division factor, and
N is the baud rate divisor. This calculation is for Asynchronous mode UART operation,
as indicated by the division factor of 16. Using Example 1 produces a calculation as
follows:

BR = CKIF/(16 x P x N)
= (4.608 x 10%)/(16 x 2.5 x 6)
= 19200

Note that in the Synchronous mode this division factor of 16 is replaced by a division
factor of 2. Consequently, baud rate may be calculated for the Synchronous mode as
follows:

BR = CKIF/CKXF
= CKIF/(2 x P x N)

where CKXF is the CKX output frequency. Note that the division factor of 2 results from
the BRG frequency being divided by 2 to produce a 50 percent duty cycle for the output
CKX frequency.

Example 2

As a further example, consider a CKI crystal frequency of 5 MHz with the UART in
Asynchronous mode, where the desired baud rate is 9600. Using the asynchronous BR
equation yields:

PxN = CKIF/(16 x BR)
= (5 x 10%)/(16 x 9600)
= 32.552

The value 32.552 is now divided by each prescaler factor in Table 11-25 to obtain a value
closest to an integer. A prescaler factor of 6.5 yields a result very close to an integer as
follows:

N = 32.552/P
= 32.552/6.5
= 5.008

COP888CG/EG/CS 11-35

Consequently, N = 5 approximately, and a value of N-1 = 4 should be programmed in the
11-bit counter for the baud rate divisor value.

The calculated values of P and N are now used to calculate the actual baud rate that is
produced:

BR = CKIF/(16 x P x N)
= (5 x 105)/(16 x 6.5 x 5)
= 9615.385
The percentage error of the Baud Rate produced is:
% ERROR = (9615.385 - 9600)/9600
= 0.0016
= 0.16%

11.13.10 UART Interrupts

The UART is capable of generating interrupts as result of Receive Buffer Full and
Transmit Buffer Empty conditions. Both interrupts have individual interrupt vectors.
Two bytes of program memory space are reserved for each interrupt vector. The two
vectors are located at addresses xxEE to xxF1 Hex in the program memory space, with
the high-order address byte depending on the location of the VIS instruction. The
interrupts can be individually enabled or disabled using the Enable Transmit Interrupt
(ETI) and Enable Receive Interrupt (ERI) bits in the ENUI register.

The interrupt from the Transmitter is set pending, and remains pending, as long as both
the TBMT and ETI bits are set. To remove this interrupt, software must either clear the
ETT bit or write to the TBUF register (thus clearing the TBMT bit).

The interrupt from the receiver is set pending, and remains pending, as long as both the
RBFL and ERI bits are set. To remove this interrupt, software must either clear the ERI
_bit or read from the RBUF register (thus clearing the RBFL bit).

11.13.11 UART Error Flags

Error conditions detected by the UART receiver are brought to the software's attention
by setting three error flags in the ENUR register. The flag bit FE (Framing Error) is set
when the receiver fails to see a valid Stop bit at the end of the frame. The flag bit DOE
(Data Overrun Error) is set if a new character is received in RBUF while it is still full
(before the software has read the previous character from RBUF). The selected parity is
verified by hardware, and the flag bit PE (Parity Error) is set if a parity error is detected.
A global flag ERR (in the ENU register) is set if any of the three error conditions (FE,
DOE, PE) occur.

If another character comes into the Receive Buffer (RBUF) before the software has read
the previous character from RBUF, any errors associated with the new character will
augment any previous errors already present. The receipt of a new character in RBUF

11-36 COP888CG/EG/CS

can cause any of the three error bits to go from a 0 to a 1, but not from a 1 to a 0. In other
words, the receipt of a new character can set new errors but cannot reset previous errors.

The four error flags (ERR, FE, DOE, PE) are all read-only bits and cannot be written by
the software. These four error bits are cleared with RESET. They are also cleared as a
result of the HALT/IDLE mode. The three error flags FE, DOE, and PE are reset
whenever they are read by software. Consequently, there are two considerations in
accessing the ENUR register where the FE, DOE, and PE flags are located:

1. When reading the ENUR register, always check for receiver errors in the copy
of the ENUR register read into the accumulator (or save the copy for error
checking later).

2. Never perform a read type operation (other than LD or X) involving the accu-
mulator on the ENUR register (examples: ADD, ADC, SUBC, AND, OR, XOR)
since this clears the error flags without saving them for later test. Bit manip-
ulation instructions (test bit, set bit, reset bit) or comparison instructions (in-
cluding those on the accumulator) with the ENUR register do not clear the
error flags. Moreover, a reset bit instruction on the error flag itself does not
clear the error flag, since these error flags are read-only bits.

11.13.12 Diagnostic Testing

A loopback feature is provided for diagnostic testing of the UART. The CHLO and CHL1
bits in the ENU register are used to select the loopback mode. When these bits are both
set to one, the following internal connections are made:

1. The receiver input pin RDX is internally connected to the transmitter output
pin TDX.

2. The output of the Transmitter Shift register is “looped back” into the Receiver
Shift register input.

In this diagnostic mode, data that is transmitted is immediately received. This diagnostic
feature allows the microcontroller to verify the transmit and receive data paths of the
UART.

Note that the framing format for the diagnostic mode is the 9-bit format, consisting of
one Start bit, nine data bits, and 7/8, 1, 1-7/8 or 2 Stop bits. Parity is not generated or
verified in the Diagnostic mode.

A block diagram illustrating the Diagnostic mode “loopback” connection is shown in
Figure 11-12.

11.13.13 Attention Mode

The UART receiver section supports an alternate mode of operation, called the Attention
mode. This mode of operation is selected by the ATTN bit in the ENUR register. The
framing format for transmission in the Attention mode is the 9-bit format, consisting of
one Start bit, nine data bits, and 7/8, 1, 1-7/8, or 2 Stop bits. Parity is not generated or
verified in the Attention mode.

COP888CG/EG/CS 11-37

R TDX
™ > ACTIVE/BREAK
UART

RX RDX

888_uart_diag

Figure 11-12 UART Diagnostic Mode Loopback Connection

The Attention mode of operation is intended for use in networking the microcontroller
with other processors. Typically, in such environments, the messages consist of device
addresses and data, with the device address indicating which of several destinations
should receive the data. The device addresses are flagged in the messages by having the
ninth bit of the data field set to a one. If the ninth bit of the data field is a zero, then the
data field contains a data byte.

While in Attention mode, the UART monitors the communication flow but ignores all
characters until an address character (a character whose ninth bit is set to 1) is received.
Upon receiving an address character, the UART signals that the character is ready by
setting the RBFL flag. This interrupts the microcontroller if the UART receiver interrupt
is enabled. The ATTN bit is cleared automatically at this point, resulting in data
characters as well as address characters being received. The software examines the
contents of the RBUF register and responds by deciding either to accept the subsequent
data stream (by leaving the ATTN bit reset) or to wait until the next address character

The operation of the UART transmitter is not affected by selection of the Attention mode.
The value of the ninth data bit to be transmitted is programmed by setting the XBIT9 bit
appropriately. The value of the ninth data bit received is obtained by reading the RBIT9
bit. This ninth data bit in the Attention mode is used to distinguish between address and
data characters.

Since RBITY is located in the ENUR register where the three error flags (FE, DOE, PE)
reside, care should be taken not to reset the error flags while reading RBIT9. To avoid
clearing the error flags, use a test bit instruction to read RBIT9.

11.13.14 Break Generation and Detection

To emulate a line Break, reset the ETDX bit in the ENUI register to change the TDX pin
into a general-purpose Port L pin, and output a logic 0 on the same pin using the Port L
data and configuration registers, bit 2.

11-38 COP888CG/EG/CS

Break detection is not directly supported by the UART, but can be programmed in
software by using the RCVG flag in the ENUR register. This flag is set high when a
framing error occurs, and is reset when RDX goes high.

11.14 MASK OPTIONS

The COP888CG/EG/CS has a mask-programmed ROM memory, which contains the
object code and the fixed data of the application program. At the same time that the ROM
pattern is programmed into the device, certain device options are also programmed. Each
option is assigned a number, and each option selection is assigned another number
(Option 1 =3, Option 2 =1, etc.). The types of options and the available selections are
listed below.

Option 1: Clock Configuration

=1 Crystal Oscillator (CKI/IO)
G7 (CK) is the clock generator output to a crystal/resonator
CKI is the clock input

=2 Single pin RC controlled oscillator (CKI/IO)
G7 is available as a HALT/Restart or general-purpose input

Option 2: HALT

=1 Enable HALT mode

=2 Disable HALT mode
Option 3 differs for the COP888CG/EG and COP888CS as noted below.
Option 3: COP888CG/EG Bonding

=1 44-pin PLCC

=2 40-pin DIP

=3 NA

=4 28-pin DIP/SO
Option 3: COP888CS Bonding

=1 44-pin PLCC

=2 40-pin DIP

=3 NA
=4 28-pin DIP
=5 28-pin SO

COP888CG/EG/CS 11-39

Chapter 12

COPS888CF

12.1 INTRODUCTION

The COP888CF is a member of the COP888 Feature Family 8-bit microcontrollers. Like
all members of this family, it provides high-performance, economical solutions for
embedded control applications. The COP888CF has an on-chip, multi-channel Analog-to-
Digital (A/D) converter. The A/D Converter converts an analog voltage into a 8-bit digital
value, which can then be read by the software from a memory-mapped register. The input
voltage range is defined by two reference voltages provided to the device, AGND and

VRER

The types of features available in the COP888 Feature Family are listed below, together
with the quantity or availability of each feature in the COP888CF.

+ Program Memory: Mask-programmed ROM, 4K bytes
* Data Memory: Static RAM, 128 bytes

* S-Register Data Memory Extension: No

+ 16-Bit Programmable Timers: Timers T1 and T2
+ IDLE Mode and Timer: Yes

* Multi-Input Wakeup/Interrupt: Yes

» Watchdog and Clock Monitor: Yes

¢ NMI Interrupt: No

» UART: No

+ Comparator: No

« A/D Converter: Yes

Several versions of the COP888CF are available that operate over different voltage and
temperature ranges. Refer to the COP888CF data sheet for more specific information.

This chapter describes the device-specific features of the COP888CF. Information that
applies to all COP888 Feature Family members is not provided in this chapter, but is
available in the earlier chapters of this manual.

12.2 BLOCK DIAGRAM

Figure 12-1 is a block diagram showing the basic functional blocks of the COP888CF. The
CPU core consists of an Arithmetic Logic Unit (ALU) and a set of CPU core registers.

COP888CF 12-1

Various functional blocks of the COP888 device communicate with the core through an
internal bus.

1C 8 BIT CORE

C'_I;SL%K MODIFIED HARVARD I/0 PORTS
IDLE ARCHITECTURE DI 1 I CI GI L
WAKEUP

RESET
16 BIT MICRO 16 BIT

TIMER WIRE/ IDLE WATCH

TIMER DOG
| INTERRUPT l m PLUS 0

A/D
CONVERTER

ENAD REG

MULTI
DECODE B TIMER BYTES BYTES INPUT
LOGIC X T2 ROM RAM WAKEUP
SP
PSW
ICNTRL
ADDR

CPU REGISTERS

8cf_blk

Figure 12-1 COP888CF Block Diagram

12.3 DEVICE PINOUTS/PACKAGES

The COP888CF is available in 28-pin DIP, 28-pin SO, 40-pin DIP and 44-pin PLCC
packages. Figure 12-2 shows the COP888CF device package pinouts.

Refer to the COP888CF data sheet for more detailed package information.

12.4 PIN DESCRIPTIONS

The COP888CF has six dedicated function pins: Vg, GND, CKI, RESET, AGND, and
Vrer Ve and GND function as the power supply pins. RESET is used as the master
reset input, and CKI is used as a dedicated clock input. AGND and Vggyp are the lower
and upper reference voltages that define the input range for the A/D Converter. All other
pins are available as general purpose inputs/outputs or as defined by their alternate
functions. For each device pin, Table 12-1 lists the pin name, pin type (Input or Output),
alternate function (where applicable), and device pin number for the available package

types.

12-2 COP888CF

N © IO SO N—O MON =

[OEOEOONONSNONGNONONO]

6 5 4 3 2 1 4443424140
cki—| 7 39— GO
Veo— 8 38— RESET

10/ACHO— 9 37— GND
11/ACH1—]10 36}—D7
12/ACH2—] 11 44-PIN 35}—D6
13/ACH3— 12 pLCC 34— D5
14/ACH4—|13 33}—D4
I5/ACH5 —] 14 32}—D3
16/ACH6—]15 31}—D2
17/ACH7—{16 30}—D1
AGND—{17 29— Do

18 19 2021 22 23 24 25 26 27 28

LYs38853499N

o

>

J
G4 —| 1 28— G3
Gs —| 2 27—aG2
Ge —| 3 26— G1
G7 —| 4 25— Go
CKI — 5 24 |—RESET
Vec —{ 6 23— GND
28-PIN _.
o— 7 e 2 Dps
H—]s 21— D2
AGND —]| 9 20 }— D1
VREF —| 10 19}— Do
Lo — 11 18— L7
Lt —] 12 17— L6
L2 — 13 16 [- L5
L3 —{ 14 15 L4

Figure 12-2 Device Package Pinouts

ca—] 1 ~ swl—oci
c3— 2 39 |— co
Ga—] 3 38 |— G3
G5—] 4 37 |— G2
G6—] 5 36 |— G1
G7—] 6 35— o
CKI— 7 34 |— RESET
Voo —] 8 40PN 331 GnD
10/ACHO—] 9 DIP 32 |— D7
11/ACH1 —{10 31 |— D6
12/ACH2 —{ 11 30 |— D5
I3/ACH3 —{12 29 |— D4
14/ACH4 —{13 28 |— D3
I5/ACH5 —|14 27 |— D2
AGND—]15 26 |— D1
VREF—|16 25 |— DO
Lo—117 24— L7
L1—J18 23— L6
L2—19 2 |— L5
L3—]20 21— L4
8cf_pinout

COP888CF

12-3

Table 12-1 COPS888CF Pinouts

Pin Alternate 28-Pin | 40-Pin | 44-Pin
Name | 1YPe Function |DIP/SO| DIP | PLCC
Lo 1/0 MIWU 11 17 —
L1 1/0 MIWU 12 18 —
L2 1/0 MIWU 13 19 19
L3 1/0 MIWU 14 20 20
L4 1/0 MIWU or T2A 15 21 25
L5 1/0 MIWU or T2B 16 22 2
L6 1/0 MIWU 17 23 27
L7 1/0 MIWU 18 24 28
GO 1/0 INT 25 35 39
G1 WDOUT 26 36 40
G2 1/0 TIB 27 37 41
G3 1/0 T1A 28 38 42
G4 1/0 SO 1 3 3
G5 1/0 SK 2 4 4
G6 I SI 3 5 5
G7 I/CKO |HALT RESTART | 4 6 6
DO 0 19 25 29
D1 0 20 26 30
D2 0 21 27 31
D3 0 22 28 32
10 I ACHO 7 9 9
11 I ACH1 8 10 10
12 I ACH2 1 11
I3 I ACH3 12 12
T4 I ACH4 13 13
15 I ACH5 14 14
16 I ACHS6 15
17 I ACH7 16
D4) 29 33
D5 0 30 34
D6 0 31 35
D7 0 32 36

12-4 COP888CF

Table 12-1 COPS888CF Pinouts (Continued)

Pin Alternate 28-Pin | 40-Pin | 44-Pin

Name Type Function DIP/SO | DIP PLCC
Co 1/0 39 43
C1 1/0 40 44
C2 /0 1 1
C3 I/O 2
C4 1/0 21
C5 I/0 22
Cé6 I/O0 23
C7 1/0 24
VREF +VREF 10 1 6 1 8
AGND AGND 9 15 17
Vee 6 8 8
GND 23 33 37
CKI 5 7 7
RESET 24 34 38

12.5 INPUT/OUTPUT PORTS

The number and types of I/O port pins available on the COP888CF depend on the
package type. The 28-pin packages have Port L, Port G, and a subset of Port D and Port I.
The 40-pin packages have Port L, Port G, Port D, and a subset of Port I and Port C. The
44-pin packages have a complete set of ports, including all bits of Port L, Port G, Port D,
Port I, and Port C. Refer to Table 12-1, COP888CF Pinouts, for a detailed list of the
available port pins and their alternate functions.

The general I/O port functions are described in Chapter 7. The COP888CF device-specific
port functions and alternate functions are described briefly below. Detailed information
on using the port pins can be found in Chapter 7, or in the section describing the specific
alternate function of the port pin.

Port C, a general-purpose bidirectional I/O port, is present in COP888CF 44-pin
packages and partially available (pins 0-3) in 40-pin packages. There are three memory
locations associated with this port: one each for the data register, for the configuration
register, and for reading the port pins directly. There are no alternate functions
associated with this port.

Port D, a general-purpose dedicated output port, is present in the 40-pin and 44-pin
COPS888CF devices. There is one memory location associated with this port, which is
used for accessing the port data register. Port D output pins can be individually set to a
logic high or low by writing a one or zero, respectively, to the associated data register bits.
To avoid placing the device into a special testing mode, the hardware design should
ensure that D2 is not pulled low during a reset.

COP888CF 12-5

Port G, a bidirectional I/O port, is present in all COP888CF devices. There are three
memory locations associated with this port: one each for the data register, for the
configuration register, and for reading the port pins directly. All Port G pins have Schmitt
triggers on their inputs. Pins G0 and G2 through G5 can be used as general purpose I/Os
or for the alternate functions listed below.

GO INTR (External Interrupt Input)

G2 T1B (Timer T1B Input)

G3 T1A (Timer T1A Input/Output)

G4 SO (MICROWIRE/PLUS Serial Output)
G5 SK (MICROWIRE/PLUS Serial Clock)

Pin G1 is a dedicated Watchdog output that can be used to reset the device in the event
of a Watchdog or Clock Monitor error. This pin can not be used a general purpose input
or output, and should be left unconnected if not used to signal an error condition. Pin G6
can be used as a general purpose input or for the alternate function SI MICROWIRE/
PLUS Serial Input). This pin can not be used as a general purpose output. Pin G7 is a
dedicated clock output (CKO) with the crystal oscillator mask option selected. This pin
can be used as a general purpose input and HALT/Restart pin with the RC oscillator
mask option selected.

Port I, a general-purpose dedicated input port, is present in all COP888CF devices,
although not all eight pins are available in the 28-pin and 40-pin packages. There is one
memory location associated with this port, which is a read-only address used for reading
the pin values directly. All Port I pins are high-impedance inputs, which must be pulled
to a logic high or low by the external hardware. The alternate functions of the Port I pins
are the A/D Converter inputs.

Port L, a general-purpose bidirectional I/O port, is present in all COP888CF devices.
There are three memory locations associated with this port: one each for the data register,
for the configuration register, and for reading the port pins directly. This port can be used
for general-purpose I/O or for Multi-Input Wakeup/Interrupt, an alternate function. In
addition, L4 and L5 can be used for Timer T2 I/O. The port inputs have Schmitt triggers
to support the Multi-Input Wakeup/Interrupt feature.

12.6 PROGRAM MEMORY

The COP888CF contains 4K bytes of mask-programmed ROM memory, used for storing
application programs and fixed program data. The ROM occupies the program memory
address space from 0000 to OFFF hex. It is addressed by the 15-bit Program Counter
(PC). Emulation devices are available for developing application programs, as described
later in this chapter.

12-6 COP888CF

12.7 DATA MEMORY

The COP888CF contains 128 bytes of static RAM memory, used for temporary data
storage. The RAM occupies two segments in data memory: 112 bytes from 00-6F Hex for
general-purpose storage, and 16 bytes from FO0 to FF Hex for the memory-mapped device
registers.

12.8 REGISTER BIT MAPS

The COP888CF has several 8-bit memory-mapped registers used for controlling the CPU
core, MICROWIRE interface, interrupt interface, timers, and other functions. In some
control registers, multiple register bits are grouped together to control a single function,
or different control bits within a register are used for unrelated control functions.

Tables 12-2 through 12-7 show the bit maps for these registers. Each bit map shows the
name of the register, the register address, the name of each bit in the register, and a brief
description of each bit. For detailed information on using individual control bits, refer to
the relevant description elsewhere in this manual: CPU core registers (Chapter 2),
Timers (Chapter 4), Watchdog and Clock Monitor (Chapter 8), Multi-Input Wakeup/
Interrupt and Timer TO (Chapter 6), or Analog-to-Digital Converter (Section 12.12).

Table 12-2 T2CNTRL, Timer T2 Control Register (Address xxC6)

Bit7 | Bit6 | Bit5 | Bit4 Bit 3 Bit 2 Bit1 Bit 0

T2C3 | T2C2 | T2C1 | T2CO0 T2PNDA T2ENA T2PNDB T2ENB
T2C3-T2C2-T2C1-T2C0: Timer T2 control bits

T2PNDA: Timer T2 interrupt A pending flag
T2ENA: Timer T2 interrupt A enable bit
T2PNDB: Timer T2 interrupt B pending flag
T2ENB: Timer T2 interrupt B enable bit

Table 12-3 WDSVR, Watchdog Service Register (Address xxC7)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
WS1 WSo0 KEY4 KEY3 KEY2 KEY1 KEY0 CMEN
WS1-WS0: Watchdog Window Select bits
KEY4-KEY0: Watchdog Key Data (01100)
CMEN: Clock Monitor Enable bit

COP888CF 12-7

Table 12-4 ENAD, A/D Converter Control Register (Address xxCB)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CHS2 CHS1 CHSO | DIFF CONT PRSC2 PRSC1 PRSCO
CHS2-CHSO: Channel Selection bits
DIFF: Differential Mode (0 = single-ended, 1 = differential)
CONT: Continuous Mode (0 = single conversion, 1 = continuous)
PRSC2-PRSCO: A/D clock prescaler selection/enable bits

Table 12-5 ICNTRL, Interrupt Control Register (Address xxE8)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused | LPEN | TOPND | TOEN | uWPND | uWEN | T1PNDB | T1ENB
LPEN: Port L Interrupt Enable bit (Multi-Input Wakeup/Interrupt)
TOPND: Timer TO (IDLE Timer) interrupt pending flag
TOEN: Timer TO (IDLE Timer) interrupt enable bit
uWPND: MICROWIRE interrupt pending flag
uWEN: MICROWIRE interrupt enable bit
T1PNDB: Timer T1 interrupt B pending flag
T1ENB: Timer T1 interrupt B enable bit

Table 12-6 CNTRL, Control Register (Address xxEE)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1C3 T1C2 T1C1 T1CO MSEL IEDG SL1 SLO
T1C3-T1C2-T1C1-T1CO: Timer T1 control bits
MSEL: MICROWIRE Select bit
IEDG: External Interrupt Edge selection bit
SL1-SLO: MICROWIRE clock divide-by selection bits

12-8 COP888CF

Table 12-7 PSW, Processor Status Word Register (Address xxEF)

Bit7 | Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HC C T1PNDA T1ENA EXPND BUSY | EXEN GIE
HC: Half-Carry bit
C: Carry bit
T1PNDA: Timer T1 interrupt A pending flag
T1ENA: Timer T1 interrupt A enable bit
EXPND: External interrupt pending flag
BUSY: MICROWIRE Busy flag
EXEN: External interrupt enable bit
GIE: Global Interrupt Enable

12.9 MEMORY MAP

Table 12-8 is a memory map showing the organization of the data memory and the
specific memory addresses of the COP888CF registers, including all RAM, I/O ports, port
registers, and control registers. For purposes of upward compatibility, do not allow the
software to access any address that is designated “Reserved” in the table.

Table 12-8 COP888CF Data Memory Map

Address Contents

00-6F RAM (112 bytes general-purpose data memory)

70-7F Unused address space

80-AF Unused address space

BO-BF Reserved

Co
C1
C2
C3
C4
C5
Cé
C7
C8
C9
CA

Timer T2 lower byte

Timer T2 upper byte

Timer T2 autoload register T2RA lower byte
Timer T2 autoload register T2RA upper byte
Timer T2 autoload register T2RB lower byte
Timer T2 autoload register T2RB upper byte
Timer T2 control register, T2CNTRL

Watchdog service register, WDSVR

Multi-Input Wakeup edge select register, WKEDG
Multi-Input Wakeup enable register, WKEN
Multi-Input Wakeup interrupt pending register, WKPND

COP888CF 12-9

Table 12-8 COP888CF Data Memory Map (Continued)

Address Contents
CB A/D Converter control register, ENAD
CC A/D Converter result register, ADRSLT

CD-CF Reserved
Do Port L data register, PORTLD
D1 Port L configuration register, PORTLC
D2 Port L input pins (read only), PORTLP
D3 Reserved
D4 Port G data register, PORTGD
D5 Port G configuration register, PORTGC
D6 Port G input pins (read only), PORTGP
D7 Port I input pins (read only), PORTI
D8 Port C data register, PORTCD
D9 Port C configuration register, PORTCC
DA Port C input pins (read only), PORTCP
DB Reserved
DC Port D data register, PORTD

DD-DF Reserved

EO0-E5 Reserved

E6 Timer T1 autoload register T1RB lower byte
E7 Timer T1 autoload register TIRB upper byte
E8 Interrupt control register, ICNTRL
E9 MICROWIRE serial I/0 shift register, SIO
EA Timer T1 lower byte
EB Timer T1 upper byte
EC Timer T1 autoload register T1RA lower byte
ED Timer T1 autoload register TLRA upper byte
EE Control register, CNTRL
EF Processor Status Word register, PSW

FO0-FB General-purpose memory-mapped registers
FC X pointer register
FD SP (Stack Pointer) register
FE B pointer register
FF Reserved

12-10 COP888CF

12.10 RESET
Upon reset of the COP888CEF, the ports and registers are initialized as follows:

Port C data register, PORTCD:

Port C configuration register, PORTCC:
Port D data register, PORTD:

Port G data register, PORTGD:

Port G configuration register, PORTGC:
Port L data register, PORTLD:

Port L configuration register, PORTLC:
Processor Status Word, PSW:

Control register, CNTRL:

Interrupt control register, ICNTRL:
Global Interrupt Enable flag, GIE:

Software Trap interrupt pending flag,
STPND:

MICROWIRE shift register, SIOR:

Timer T2 control register, T2CNTRL:
Timer T1 and T2 reload registers:

Accumulator, A and Timers T1, T2:

Program Counter, PC:
SP (Stack Pointer) register:

B pointer register:
X pointer register:

Multi-Input Wakeup edge select register,
WKEDG:

Multi-Input Wakeup enable register,
WKEN:

Multi-Input Wakeup interrupt pending
register, WKPND:

00
00
FF
00
00
00
00
00
00
00
Cleared

Cleared

Upon power-up reset, unknown. Upon
external reset, unchanged.

00

Upon power-up reset, unknown. Upon
external reset, unchanged.

Upon power-up reset, unknown. Upon
external reset, unknown (with crystal
oscillator option) or unchanged (with
RC oscillator option).

00
6F

Upon power-up reset, unknown. Upon
external reset, unchanged.

Upon power-up reset, unknown. Upon
external reset, unchanged.
00

00

Unknown

COP888CF 12-11

Watchdog service register, WDSVR: D9

RAM (other than FC-FF):

Upon power-up reset, unknown. Upon
external reset, unchanged.

A/D Converter control register, ENAD: 00

A/D Converter result register, ADRSLT:

12.11 INTERRUPTS

Table 12-9 shows the types of interrupts in the COP888CF, the interrupt arbitration
ranking, and the locations of the corresponding interrupt vectors in the vector table. For
basic information on COP888 interrupts, see Chapter 3.

Unknown

Table 12-9 COPS888CF Interrupt Rank and Vector Addresses

Arbitration Rank | Interrupt Description | Vector Address*

1 Software Trap (INTR) 01FE-O1FF

2 (Reserved) 01FC-01FD

3 External Interrupt Pin GO 01FA-01FB

4 IDLE Timer Underflow 01F8-01F9

5 Timer T1A/Underflow 01F6-01F7

6 Timer T1B 01F4-01F5

7 MICROWIRE/PLUS 01F2-01F3

8 (Reserved) 01F0-01F1

9 (Reserved) 01EE-O1EF

10 (Reserved) 01EC-01ED

11 Timer T2A/Underflow 01EA-01EB

12 Timer T2B 01E8-01E9

13 (Reserved) 01E6-01E7

14 (Reserved) 01E4-01E5

15 Port L / Wakeup 01E2-01E3

16 Default VIS Interrupt 01E0-01E1
* The location of the vector table depends on the location of the VIS
instruction. Vector addresses shown in table assume a VIS location
between O0FF Hex and 01DF Hex.

12-12 COP888CF

12.12 ANALOG-TO-DIGITAL CONVERTER

The COP888CF has a multi-channel, multiplexed-input Analog-to-Digital (A/D)
Converter. The A/D Converter receives an analog voltage signal on an input pin (or a pair
of input pins), and converts the analog signal into a 8-bit digital value. The digital value
can then be read by the software from a memory-mapped register. The input voltage
range is defined by two reference voltages provided to the device, AGND and Vggp

The A/D Converter is useful in applications where the software needs to read a quantity
(for example, temperature or speed) from an analog sensor. Up to eight different single-
ended or four different differential inputs can be handled by a single COP888CF device
through the multiplexed input channels.

12.12.1 A/D Operation

Figure 12-3 is a block diagram showing the structure of the COP888CF A/D Converter.
There are two memory-mapped registers in the A/D Converter circuit: the A/D
Converter control register (ENAD), used for configuring and enabling the A/D
Converter, and the A/D Result register (ADRSLT), a read-only register containing the
results of the conversion.

| INTERNAL BUS |
F N h

h 4 cKI

ENAD REGISTER]7 l ADRSLT REGISTER |
] !)

ACHO —»)
o — s, |
ACH2 —» PRESCALER
REGISTER

ACH3 —»]
ACHA — MULTIPLEXER
ACH5 —»

INPUT
ACHe — VOLTAGE
ACH7 —»] .

TEST |

COMPARATOR
AGND —»| p|GITAL-TO-ANALOG VOLTAGE
VREF CONVERTER
888_atod_blk

Figure 12-3 COP888CF A/D Converter Block Diagram

The A/D Converter supports ratio-metric measurements. The input voltage range is
determined by two fixed reference voltages supplied to the device through pins AGND
(analog ground) and Vggp (voltage reference). AGND is the lower limit, and Vggp is the

COP888CF 12-13

upper limit of the input voltage range. The reference voltages are allowed to be set only
between certain levels related to GND and V, as specified in the device data sheet.

Analog voltages are received on pins ACHO through ACH7 (Analog Channels 0 through
7), which are alternate functions of the Port I pins. A multiplexer selects one channel for
a single-ended conversion, or a pair of channels for differential-pair conversion, based on
the value programmed into the ENAD register. The input voltage (or for a differential
pair, the difference between the two input voltages) is sent to a comparator. The
comparator compares the input voltage with another analog voltage generated by an
internal digital-to-analog converter.

The A/D Converter uses successive approximation to determine the analog input voltage.
The internal digital-to-analog converter generates a test voltage, which is initially set to
the middle of the possible voltage range, halfway between the voltages on AGND and
VgEer After the comparison is made, another comparison is made with the test voltage
set to the middle of the new possible range (either 1/4 or 3/4 between AGND and Vggp.
This is repeated until the input voltage is determined to a precision of 1/256 of the full
input voltage range (eight iterations).

Each time a comparison is made, a bit is set or cleared in the Successive Approximation
Register, depending on whether the input voltage is higher or lower than the test voltage.
The bit values in the Successive Approximation Register are determined from most to
least significant bit, generating an 8-bit digital value that is proportional to the analog
input voltage. The value 00 Hex represents the lowest voltage (AGND), and a value of FF
Hex represents the highest voltage (Vgygp). At the end of the conversion, the 8-bit value
is transferred to the ADRSLT register, allowing the final result to be read by the
software. The Successive Approximation Register cannot be accessed directly by the
software.

The A/D Converter uses its own clock, which is generated by scaling down the CKI clock
to a lower frequency. The clock prescaler circuit allows a choice of several different divide-
by factors for generating the A/D clock. The choice is made by programming a set of bits
in the ENAD register. This feature allows a certain amount of control over the trade-off
between speed and accuracy of the A/D Converter without changing the chip clock speed,
as explained later in this chapter.

A single conversion takes 12 A/D clock cycles: one for A/D reset, two for sampling the
input voltage, eight for conversion, and one for transferring the result to the ADRSLT
register. The total conversion time depends on the chip clock speed and the divide-by
factor used for generating the A/D clock. If analog voltages on different channels are to
be monitored simultaneously, they must be time-multiplexed by the application software.

The A/D Converter circuit is powered down when the device enters the HALT or IDLE
mode. If the A/D Converter is running when this happens, the conversion is cancelled,
and then started again from the beginning upon exit from the HALT or IDLE mode.

12.12.2 A/D Converter Registers

Two memory-mapped registers are used with the A/D Converter: the ENAD register at
address xxCB Hex, and the ADRSLT register at address xxCC Hex. The ENAD register
is a read-write memory location used for controlling the operation of the A/D Converter.

12-14 COP888CF

The ADRSLT register is a read-only register that contains the most recent A/D
conversion result.

The A/D Converter is controlled by writing a byte to the ENAD register. The data byte
written to this register enables (or disables) the A/D Converter clock, sets the divide-by
factor for generating the clock, selects the operating mode (single-conversion or
continuous mode, single-ended or differential inputs), and selects the channel or channel
pair that is to receive the analog input. The register bit map for the ENAD register is
shown in Table 12-10.

Table 12-10 ENAD, A/D Converter Control Register (Address xxCB)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CHS2 CHS1 CHSO0 DIFF CONT PRSC2 PRSC1 PRSCO
CHS2-CHSO: Channel Selection bits
DIFF: Differential Mode (0 = single-ended, 1 = differential)
CONT: Continuous Mode (0 = single conversion, 1 = continuous)
PRSC2-PRSCO: A/D clock prescaler selection/enable bits

The ENAD register is cleared upon reset. This inhibits operation of the A/D clock and
disables the A/D converter. To begin using the A/D converter, it is only necessary to write
the proper bit values to the ENAD register, as described in detail below.

The ADRSLT register contents are unknown following a reset.

12.12.3 Prescaler Selection

The A/D clock is generated by dividing the CKI clock. The resulting clock period is an
integer multiple of the CKI clock. The divide-by factor can be set to 1, 2, 4, 6, 8, 12, or 16.
However, the resulting A/D clock frequency must be between 100 KHz and 1.67 MHz for
proper operation of the A/D circuit.

With a CKI clock running at 10 MHz (1 MHz instruction cycle), a divide-by factor of 6 results
in an A/D clock frequency of 1.67 MHz, the maximum allowed A/D clock speed. Therefore,
with the CKI clock running at 10 MHz, the selected divide-by factor must be 6, 8, 12, or 16.
A lower divide-by factor can be used only if the CKI clock is running slower than 10 MHz. In
any case, the resulting clock frequency must be between 100 KHz and 1.67 MHz.

The prescaler divide-by factor is programmed by writing bits 2, 1, and 0 in the ENAD
register. Table 12-11 shows the binary values used for programming this part of the
register, and the resulting A/D clock for each binary value.

COP888CF 12-15

Table 12-11 A/D Prescaler Options

ENAD Bits 2-1-0 A/D Clock
000 Inhibit A/D clock
001 Divide CKI by 1
010 Divide CKI by 2
011 Divide CKI by 4
100 Divide CKI by 6
101 Divide CKI by 12
110 Divide CKI by 8
111 Divide CKI by 16

If the value 000 is written, the A/D clock is stopped immediately. This can be done to
reduce power consumption when the A/D converter is no longer needed.

12.12.4 Single Conversion or Continuous Mode

The A/D Converter can be programmed to perform a single conversion, or to perform
conversions continuously using the same single-ended or differential-pair input. The
single-conversion mode can be used to obtain a single analog value, or used sequentially
to obtain values from different channels. The continuous mode can be used to monitor a
single channel or one differential-pair input over a period of time. The operating mode is
controlled by bit 3 of the ENAD register: 0 for the single-conversion mode, or 1 for the
continuous mode.

In the single-conversion mode, the conversion is started as soon as the ENAD register is
written with the proper value. After 12 A/D clock cycles, the result is transferred to the
ADRSLT register. The software can read the result any time after that.

In the continuous mode, the conversion is performed in the same manner as the single-
conversion mode, but conversions are repeated continuously using the same analog
input. A new result is transferred to the ADRSLT register every 12 A/D clock cycles,
overwriting the previous result. The software can read the most recent result from the
ADRSLT register at any time. Conversions are performed repeatedly until the software
writes a new control byte to the ADRSLT register.

12.12.5 Channel Selection

Analog voltages are received on pins ACHO through ACH7, which are alternate functions
of Port I pins 10 through I7. Depending on the package type, some COP888CF devices do
not have a complete set of eight Port I pins, and therefore do not have all eight analog
channels available.

The A/D Converter uses one channel for a single-ended conversion, or a pair of channels
for differential-pair conversion. The single-ended or differential mode is selected with bit

12-16 COP888CF

4 of the ENAD register: 0 for single-ended, or 1 for differential. The channel number (or
set of two channel numbers) is selected with bits 7, 6, and 5 of the same register, as
indicated Table 12-12.

Table 12-12 A/D Channel Selection

ENAD Bits 7-6-5 | Single-Ended Mode | Differential Pair Mode (+, -)
000 ACHO ACHO, ACH1
001 ACH1 ACH1, ACHO
010 ACH2 ACH2, ACH3
011 ACH3 ACHS3, ACH2
100 ACH4 ACH4, ACH5
101 ACH5 ACH5, ACH4
110 ACH6 ACH6, ACH7
111 ACH7 ACH7, ACH6

12.12.6 Multi-Channel Conversion

The A/D Converter allows the use of up to eight single-ended or four differential-pair
inputs. However, there is only one A/D converter, with only one result register. If multiple
channels are to be monitored simultaneously, they must be time-multiplexed by the
application software.

Figure 12-4 shows an example of an assembly language program that performs this
function. The program makes a request for an analog-to- digital conversion from each of
eight single-ended channels in sequence, reads the eight result bytes, and writes the
results into a block of data memory. Operation of the program is explained below.

;A/D, convert 8 channels Bytes/Cycles
ADCS8: RC ;Reset carry bit 1/1
LD ENAD, #4 ;Initiate ACHO conversion 3/3
LD B, #ENAD ;B pointer to ENAD register 2/2
LD X ,#DEST ;X pointer to result destination 2/3
LOOP: LD A,[B] ;Get previous ENAD contents 1/1
ADC A,#020 ;Change to next input channel 2/2
X A, [B+] ;sRequest next conversion 1/2
LD A,[B-] ;Get previous result from ADRSLT 1/2
X A, [X+] ;Store result and incr. pointer 1/3
IFNC ;Test ADC instr. for overflow 1/1
JP LOOP ;Loop back for next channel 1/3

Figure 12-4 A/D Conversion Routine

COP888CF 12-17

The program was written with execution speed as the primary consideration. The
comment text in the program listing shows the purpose of each instruction, the number
of bytes of program memory used by the instruction, and the number of instruction clock
cycles required to execute the instruction.

At the start of the program, the first conversion is initiated, specifying channel ACHO
with a clock divide-by factor of 6. Both ENAD and ADRSLT will be accessed with the B
pointer, so the B register is initialized to ENAD. The results will be stored in a block of
data memory occupying eight bytes starting at DEST. The data memory will be accessed
with the X pointer, so the X register is initialized to DEST.

The program loop first reads the ENAD register, changes the control byte to specify the
next single-ended channel (ACH1 the first time through the loop), and uses the X
(exchange) instruction to request the next conversion. The X instruction also increments
the B register, setting up the next instruction to access the ADRSLT register. (The
ADRSLT register immediately follows the ENAD register in data memory.) The result
byte from the previous conversion is loaded into the Accumulator from ADRSLT, and at
the same time, the B pointer is decremented in preparation for the next pass through the
loop. The result byte is written into data memory using the X pointer. The IF instruction
tests for overflow from the ADC instruction, which will happen after all eight result bytes
have been written (eight passes through the loop).

In each iteration of the loop, the program requests a new conversion and quickly reads
the results of the previous conversion. The old result remains in the ADRSLT register
until overwritten with the new result, which takes 12 A/D clock cycles, or 48 CKI clock
cycles. The loop section of the program takes 14 instruction clock cycles to execute, or 140
CKI clock cycles. Thus, the new result becomes available before it is needed in the next
iteration of the loop.

The program code uses 16 bytes of program memory. For execution, the whole routine
takes 119 instructions cycles: 9 cycles for initial setup, 14 cycles for the first seven loops,
and 12 cycles for the last iteration of the loop (1 cycle to skip over the JP instruction).
With a 10 MHz CKI clock, the routine takes 119 microseconds.

12.12.7 Speed, Accuracy, and Hardware Considerations

The maximum allowed A/D clock speed of 1.67 MHz results in a clock period of 600 ns.
The time required for one A/D conversion is 12 A/D clock cycles, or 7.2 microseconds. This
is the shortest possible conversion time for the COP888CF A/D converter. In some cases,
a longer conversion time may be necessary or desirable in order to ensure accurate
conversions. This is because it takes some time for the analog input signal to charge the
capacitive load on the A/D input.

Figure 12-5 shows the internal operation of an analog input pin in the single-ended
mode, together with the capacitive loads and input protection components on the pin. The
analog switch is kept open most of the time. For an A/D conversion, the switch is closed
for the duration of two A/D clock cycles, and the voltage is sampled in the middle of this
period.

The A/D clock period should be made long enough to allow the capacitor to charge up to
the full voltage supplied to the analog input pin. Whether the minimum A/D clock period

12-18 COPS888CF

Vee

T Vee
<2uA
JUNCTION
ZX Veo—15V LEAKAGE
Voo +15V

RESISTIVE COUPLER

ANALOG
INPUT : W—Bg
PIN

*

<4.5KQ
7pF ZS +15V=Vgg o
[Vgg — 0.5V <2uA
5 JUNCTION CAPACITANCE
LEAKAGE
INPUT
PROTECTION
DEVICE T Ves
Vss

* The analog switch is closed only during the sample time.
888_atod_input

Figure 12-5 Analog Input Pin Internal Operation

of 600 ns is sufficient depends on the output impedance of the analog source and the
amount of inaccuracy that is acceptable for the application. In general, the benefits and
costs of using a slower A/D clock should be considered when the analog source impedance
exceeds 1 KQ. As a rule of thumb, you should increase the A/D clock period in proportion
to the source impedance. For example, for a source impedance of 2 KQ, use twice the
minimum clock period of 600 ns, or 1200 ns (833 KHz). The A/D clock can be slowed down
either by increasing the programmed divide-by factor or by reducing the CKI clock
frequency, or a combination of both. The A/D clock frequency should not be reduced below
100 KHz.

Both electrical noise and digital clock coupling to the analog inputs can cause inaccurate
conversions. For the most accurate possible results, design the circuit board to minimize
noise on these inputs. Keep the leads to the analog input pins as short as possible, and
as far away as possible from clock leads.

12.13 MASK OPTIONS

The COP888CF has a mask-programmed ROM memory, which contains the object code
and the fixed data of the application program. At the same time that the ROM pattern is
programmed into the device, certain device options are also programmed. Each option is
assigned a number, and each option selection is assigned another number (Option 1 =3,
Option 2 =1, ete.). The types of options and the available selections are listed below.

COP888CF 12-19

Option 1: Clock Configuration

=1 Crystal Oscillator (CKI/10)
G7 (CKO) is the clock generator output to a crystal/resonator
CKI is the clock input.

=2 Single-pin RC controlled oscillator
G7 is available as a HALT/Restart and general-purpose input

Option 2: HALT
=1 Enable HALT mode
=2 Disable HALT mode
Option 3: COP888CF Bonding
=1 44-pin PLCC
=2 40-pin DIP

=3 NA
=4 28-pin DIP
=5 28-pin SO

12.14 EMULATION DEVICES

When a COP888CF is used in a design, an emulator is necessary for developing and
testing the system hardware and application software. For information on emulators, see
Appendix C.

12-20 COP888CF

Chapter 13

APPLICATION HINTS

13.1 INTRODUCTION

This chapter describes several application examples using the COP888 family of
microcontrollers. Design examples often include block diagrams and/or assembly code.
Certain hardware design considerations are also presented.

Topics covered in this chapter include the following:
» MICROWIRE/PLUS implementation examples
* Timer application examples
» Triac control example
e Analog to digital conversion technique
« Battery-powered weight measurement example
» Zero Cross Detection
¢ Industrial timer example
* Programming examples (clear RAM, binary arithmetic)
« External power wakeup circuit
» Watchdog Reset Circuit
¢ Input protection on COP888 pins

» Electromagnetic interference (EMI) considerations

13.2 MICROWIRE/PLUS INTERFACE

A large number of off-the-shelf devices are directly compatible with the MICROWIRE/
PLUS interface. This allows direct interface of the COP888 microcontrollers with a large
number of peripheral devices. The following sections provide examples of the
MICROWIRE/PLUS interface. These examples include a master/slave mode protocol,
code for a continuous mode of operation, code for a fast burst mode of operation, and a
COP888CL to an NMC93C06 interface.

13.2.1 MICROWIRE/PLUS Master/Slave Protocol

This section gives a sample MICROWIRE/PLUS master/slave protocol, the slave mode
operating procedure for the sample protocol, and a timing illustration of the sample
protocol.

APPLICATION HINTS 13-1

Master/Slave Protocol:

1.

CS from the master device is connected to GO of the slave device. An active-
low level on the CS line causes the slave to interrupt.

From the high-to-low transition on the CS line, there is no data transfer on the
MICROWIRE interface until the setup time T has elapsed (see Figure 13-1).

The master initiates data transfer on the MICROWIRE interface by turning
on the SK clock.

A series of data transfers takes place between the master and slave devices.

The master pulls the CS line high to end the MICROWIRE operation. The
slave device returns to normal mode of operation.

Slave Mode Operating Procedure (for the previous protocol):

1. Set the MSEL bit in the CNTRL register to enable MICROWIRE; GO and G5
are configured as inputs and G4 as an output. Reset bit 6 of the Port G con-
figuration register to select Standard SK Clocking mode.

2. Normal mode of operation until interrupted by CS going low.

3. Set the BUSY flag and load SIOR register with the data to be sent out on SO.
(The shift register shifts eight bits of data from SO at the high-order end of
the shift register. Concurrently, eight new bits of data from SI are loaded into
the low-order end of the shift register.)

4. Wait for the BUSY flag to be reset. (The BUSY flag automatically resets after
8 bits of data have been shifted.)

5. If data is being read in, the contents of the SIO register are saved.

6. The prearranged set of data transfers are performed.

csS] —”

—» T le—

“olks '_c&suc&s“ofm “elks " “olks |

SK

—p t <+
BUSY L U U _‘ l_
cop8_uwirep_proto
Figure 13-1 MICROWIRE/PLUS Sample Protocol Timing
13-2 APPLICATION HINTS

7. Repeat steps 3 through 6. The user must ensure step 3 is performed within z-
time (refer to Figure 13-1) as agreed upon in the protocol.

13.2.2 MICROWIRE/PLUS Continuous Mode

The MICROWIRE/PLUS interface can be used in continuous clock mode with the master
mode divide-by-eight clock division factor selected. The maximum data transfer rate for
this MICROWIRE/PLUS continuous clock mode is 64 microseconds per byte (equivalent
to 125 KHz) for parts operating with a 1 usec instruction cycle.

The continuous clock mode is achieved by resetting the BUSY bit under program control
just before it would automatically be reset with the hardware, and then immediately
setting the BUSY bit with the next instruction. The SIO MICROWIRE shift register is
then loaded (or read) with the following instruction. This loading of SIO occurs before the
SK clock goes high, even though the previous set BUSY bit instruction has started the
divide-by-eight (3-stage) counter. The B pointer must be already set up to point at the
PSW register where the MICROWIRE BUSY bit is located. This three-instruction
sequence is programmed as follows:

Instruction Bytes/Cycles
RBIT BUSY, [B] 1/1
SBIT BUSY, [B] 1/1
X A, SIOR 2/3

This three-instruction sequence must be embedded in an instruction program loop that
is exactly 64 instruction cycles (t. cycles) in length. This yields a 125-KHz (64
microseconds per byte) data transfer rate at the maximum instruction cycle rate of
1 MHz.

The following program demonstrates the use of the MICROWIRE/PLUS continuous
clock mode. The program continually outputs the 256 bytes of the current program
memory block on the MICROWIRE S0 output pin (G4). The low-order bit (GO) of Port G
is set to cover the transition period of the three-instruction sequence outlined previously,
where the SIO register is loaded with a new byte.

.SECT MW, REG

MWMEM: .DSB 2
MWTEMP = MWMEM
MWCNT = MWMEM+1
MARK = 0
BUSY = 2
.SECT CODE, ROM CYCLES
MWCONT: LD PORTGC, #031
LD PORTGD, #0
LD CNTRL, #0B
LD B, #PSW
LD MWCNT, #0
MWLOOP: LD A, MWCNT 3
INC A 1
X A, MWCNT 3
LAID 3
SBIT MARK, PORTGD 4
RBIT BUSY, [B] 1
SBIT BUSY, [B] 1
X A, SIOR 3
RBIT MARK, PORTGD 4
LD MWTEMP, #6 3

APPLICATION HINTS 13-3

MWLUP: DRSZ MWTEMP
8 }xe -2

JP MWLUP 3 - 34
NOP 1
JP MWLOOP 3
TOTAL CYCLES IN MWLOOP = 64

13.2.3 MICROWIRE/PLUS Fast Burst Output

The maximum COP888 MICROWIRE/PLUS master mode burst clock rate (using the
divide-by-two clock division factor) is 500 KHz. This assumes that the COPS888
microcontroller is running at the maximum instruction cycle frequency of 1 MHz. The
equivalent time of one extra master mode SK clock cycle is necessary to set up the next
byte (and/or read the previous byte) in SIOR when using the burst mode SK frequency.
This yields an equivalent minimum data transfer time of 18 microseconds per byte.

The following program demonstrates the use of the MICROWIRE/PLUS burst clock
mode at the maximum data transfer rate (with the divide-by-two master mode clock
option selected). The X pointer is initialized to the TOP of a RAM table, where SIZE
represents the size of the table. This subroutine outputs the contents of the RAM table
on the MICROWIRE S0 output pin (G4).

.SECT MW, REG

MWCNT: .DSB 1
BUSY = 2
.SECT MWFB, ROM INSTRUCTION CYCLE NUMBER
CYCLES IN Figure 13-2
MWBRST: LD CNTRL, #8
LD B, #PSW
LD MWCNT, #SIZE
LD X, #TOP
MWLOOP: LD A, [X-] 3 13, 14, 15
X A, SIOR 3 16, 17, 18
SBIT BUSY, [B] 1 1
NOP* 1 2
NOP* 1 3
LAID* 3 4, 5, 6
DRS2Z MWCNT 3 7, 8, 9
JP MWLOOP 3 10, 11, 12
RET
TOTAL CYCLES IN MWLOOP = 18

* Time Delay

The MICROWIRE BUSY bit is allowed to reset automatically with the hardware
following the eighth SK clock. The transfer of new data into the SIO register and the
transfer of the new input data from SIO to A occurs at the end of the second cycle of the
three-cycle “exchange A with SIO” instruction. This exchange instruction is immediately
followed by the “set BUSY bit” instruction to initiate another MICROWIRE serial byte
transfer. The associated timing for this 18-instruction cycle MICROWIRE loop is shown
in Figure 13-2.

13-4 APPLICATION HINTS

BUSY —
1 2 3| |4 5 6 7 8 1 2 3 4 5 6 7 8
SK |

234567 8 910111213141516 17181 2 3 4 56 7 8 91011121314 151617 18 1 2

cop8_uwirep_fast_burt

Figure 13-2 MICROWIRE/PLUS Fast Burt Timing

13.2.4 NMC93C06-COP88S8CL Interface

This example shows the COP888CL interface to a NMC93C06, a 256-bit E2PROM, using
the MICROWIRE interface. The pin connection for interfacing a NMC93C06 with the
COPS888CL microcontroller is shown in Figure 13-3. Some notes on the NMC93C06
interface requirements are:

1. The SK clock frequency should be less than 250 KHz. The SK clock should be
configured for standard SK mode.

2. The CS low period following an Erase/Write instruction must not exceed 30
ms maximum. It should be set at the typical or minimum specification of 10

ms.
Vee
6
5
CKI
8 v
1 ———®Vce
AN *1cko SO o
copssscL g |3 41 oo NMC93C06
—’ D sk 2 2} sk
cs 5
v 1
25
GO
23 lGND

b avo

Figure 13-3 NMC93C06-COP888CL Interface

8cl_intf_nmec

APPLICATION HINTS 13-5

3. The start bit on DI must be programmed as a “0” to “1” transition following a
CS enable (“0” to “1”) when executing any instruction. One CS enable transi-
tion can execute only one instruction.

4. In the read mode, following an instruction and data train, the DI is a “don’t
care” while the data is being output for the next 17 bits or clocks. The same
is true for other instructions after the instruction and data has been fed in.

5. The data out train starts with a dummy bit 0 and is terminated by chip dese-
lect. Any extra SK cycle after 16 bits is ignored. If CS is held on after all 16 of
the data bits have been output, the DO will output the state of DI until an-
other CS low to high transition starts a new instruction cycle.

6. After a read cycle, the CS must be brought low for one SK clock cycle before
another instruction cycle starts.

The following table describes the instruction set of the NMC93C06. In the table
A3A2A1A0 corresponds to one of the sixteen 16-bit registers.

Commands | Start Bit | Opcode | Address Comments

READ 1 0000 | A3A2A1A0 | Read Register 0-15

WRITE 1 1000 | A3A2A1A0 | Write Register 0-15

ERASE 1 0100 | A3A2A1A0 | Erase Register 0-15

EWEN 1 1100 | 0001 Write/Erase Enable

EWDS 1 1100 0010 Write/Erase Disable

WRAL 1 1100 0100 Write All Registers

ERAL 1 1100 | 0101 Erase All Registers
All commands and data are shifted in/out on the rising edge of the SK clock. All
instructions are initiated by a low-to-high transition on CS followed by a low-to-high

transition on DI.

A detailed explanation of the NMC93C06 E2PROM timing, instruction set, and other
considerations can be found in the datasheet. A source listing of the software to interface
the NMC93C06 with the COP888CL is provided below.

;This program provides in the form of subroutines, the ability to erase,

;enable, disable, read and write to the NMC93C06 EEPROM.

.INCLD COP888.INC

.SECT NMC, RAM
NMCMEM: .DSB 5

SNDBUF = NMCMEM ;Contains the command byte to be written NMC93C06
RDATL = NMCMEM+1 ;Lower byte of NMC93C06 register data read
RDATH = NMCMEM+2 ;Upper byte of NMC93C06 register data read
WDATL = NMCMEM+3 ;Lower byte of data to be written to NMC93C06 register
WDATH = NMCMEM+4 ;Upper byte of data to be written to NMC93C06 register
ADRESS: .DSB 1 ;Lower 4-bits of this location contain the address of
;the NMC93C06 register to read/write
FLAGS: .DSB 1 ;Used for setting up flags
;Flag value Action
;00 Erase, enable, disable, erase all
;01 Read contents of NMC93C06 register

13-6 APPLICATION HINTS

;03 Write to NMC93C06 register

;Others Illegal combination
.SECT CNT, REG
DLYH: .DSB 1 ;Delay counter register
DLYL: .DSB 1 ;Delay counter register

;The interface between the COP888 and the NMC93C06 (256-bit EEPROM) consists of four
;lines: The GO (chip select line), G4 (serial out S0), G5 (serial clock SK), and
;G6 (serial in SI).

Initialization

~e we e

.SECT NMCODE, ROM

LD PORTGC,#031 ;Setup GO, G4, G5 as outputs and
;select standard SK mode

LD PORTGD,#00 ;Initialize G data reg to zero

LD CNTRL, #08 ;Enable MSEL, select MW rate of 2tc

LD B, #PSW

LD X,#SIOR

;This routine erases the memory location pointed to by the address contained in the
;location “ADRESS.” The lower nibble of “ADRESS” contains the NMC93C06 register
;address and the upper nibble should be set to zero.

;

ERASE: LD A,ADRESS
OR A,#0C0
X A, SNDBUF
LD FLAGS, #0
JSR INIT
RET

;This routine enables programming of the NMC93C06. Programming must be preceded
;once by a programming enable (EWEN).

;

EWEN: LD SNDBUF, #030
LD FLAGS, #0
JSR INIT
RET

;This routine disables programming of the NMC93C06

r’

EWDS: LD SNDBUF, #0
LD FLAGS, #0
JSR INIT
RET

;This routine erases all registers of the NMC93C06

’

ERAL: LD SNDBUF, #020
LD FLAGS, #0
JSR INIT
RET

;This routine reads the contents of a NMC93C06 register. The NMC93C06 address is
;specified in the lower nibble of location “ADRESS.” The upper nibble should be set
;to zero. The 16-bit contents of the NMC93C06 register are stored in RDATL and RDATH.

;

READ: LD A,ADRESS
OR A,#080
X A, SNDBUF
LD FLAGS, #1
JSR INIT
RET

APPLICATION HINTS 13-7

;This routine writes a 16-bit value stored in WDATL and WDATH to the NMC93C06 register
;whose address is contained in the lower nibble of the location “ADRESS.” The upper
;jnibble of address location should be set to zero.

WRITE: LD A,ADRESS
OR A,#040
X A, SNDBUF
LD FLAGS, #3
JSR INIT
RET

;This routine sends out the start bit and the command byte. It also deciphers the
;contents of the flag location and takes a decision regarding write, read or return
;to the calling routine.

’
INIT: SBIT 0, PORTGD ;Set chip select high
LD SIOR,#001 ;Load SIOR with start bit
SBIT BUSY, [B] ;Send out the start bit
PUNT1: IFBIT BUSY, [B]
JP PUNT1
LD A, SNDBUF
X A,[X] ;Load SIOR with command byte
SBIT BUSY, [B] ;Send out command byte
PUNT2: IFBIT BUSY, [B]
Jp PUNT2
IFBIT 0,FLAGS ;Any further processing?
JP NOTDON ;Yes
RBIT 0,PORTGD ;No, reset CS and return
RET
NOTDON: IFBIT 1,FLAGS ;Read or write?
JP WR494 ;Jump to write routine
LD SIOR,#000 ;No, read NMC93C06
SBIT BUSY,PSW ;Dummy clock to read zero
RBIT BUSY, [B]
SBIT BUSY, [B]
PUNT3: IFBIT BUSY, [B]
JP PUNT3
X A, [X]
SBIT BUSY, [B]
X A,RDATH
PUNT4: IFBIT BUSY, [B]
JpP PUNT4
LD A, [X]
X A,RDATL
RBIT 0,PORTGD
RET
WR494: LD A ,WDATH
X A, [X]
SBIT BUSY, [B]
PUNTS5: IFBIT BUSY, [B]
Jp PUNTS
LD A,WDATL
X A, [X]
SBIT BUSY, [B]
PUNT6: IFBIT BUSY, [B]
Jp PUNT6
RBIT 0, PORTGD
JSR TOUT
RET

13-8 APPLICATION HINTS

;Routine to generate delay for write

i
TOUT: LD DLYH,#00A

WAIT: LD DLYL,#0FF
WAIT1: DRSZ DLYL
JP WAIT1
DRSZ DLYH
JpP WAIT
RET
.END

13.3 TIMER APPLICATIONS

This section describes two applications that use the 16-bit on-chip timer: speed
measurement with the Input Capture mode, and an external event counter with the
External Event Counter mode.

13.3.1 Timer Capture Example

The Timer Input Capture Mode can be used to measure the time between events. The
simple block diagram in Figure 13-4 shows how the COP888 can be used to measure
motor speed based on the time required for one revolution of the wheel. A magnetic
sensor is used to produce a pulse for each revolution of the wheel.

MICROWIRE/PLUS

T1A

CcoPs COP472 DISPLAY

TIMER
CAPTURE
INPUT

cop8_timer_cap_app

Figure 13-4 Timer Capture Application

In the capture mode of operation, the timer counts down at the instruction cycle rate. In
this application, the timer T1 is set up to generate an interrupt on a T1A positive edge
transition. The timer is initialized to OFFFF Hex and begins counting down. An edge
transition on the T1A input pin of the timer causes the current timer value to be copied
into the R1A register. In addition, it sets the timer interrupt pending flag, which causes
a program branch to memory location OFF Hex. The interrupt service routine for the
timer is vectored to using the VIS instruction. The interrupt service routine resets the

APPLICATION HINTS 13-9

T1PNDA pending flag. It then reads the contents of R1A and stores it in RAM for later
processing. An RETI instruction is used to return to normal program execution and re-
enable subsequent interrupts (by setting the GIE bit).

On the next rising edge transition on T1A, the program returns to the interrupt service
routine. The value in R1A is read again, and compared with the previously read value.
The difference between the two captured values, multiplied by the instruction cycle time,
gives the time for one revolution. This is easily converted to a frequency. The frequency
may be displayed on an LCD using the COP MICROWIRE/PLUS interface and a
COP472-3 LCD Driver.

NOTE: The T1B input may be used simultaneously to measure the time between
different events.

An example of the code that can be used for this application is provided below.

.INCLD COP888XX.INC
.SECT TMR, ROM
;TIMER T1 CONFIGURATION

LD PORTGC, #00 ;Configure G3/T1A as input
LD PORTGD, #08 ;Weak pull-up on G3
LD TMR1LO, #0FF ;Timer lower byte initialization
LD TMR1HI,#0FF ;Timer upper byte initialization
LD ICNTRL,#00 ;Disable T1B interrupt
LD CNTRL, #0CO ;Timer capture mode, positive edge on T1A
LD PSW,#011 ;Enable T1A and global interrupts
SELF: JP SELF ;Wait for capture

.SECT INTERRUPT,ROM, ABS=0FF ;TIMER INTERRUPT HANDLING ROUTINE
;Set location counter to O00FF Hex

VIS ;Vector to appropriate interrupt routine
; TIMER SERVICE ROUTINE
T1SERV: IFBIT T1CO0,CNTRL ;If Tl underflow
JP UNDFLW ;then handle timer underflow
RBIT T1PNDA, PSW ;else Reset T1PNDA pending flag

. ; (Process Timer Capture)
; (Process Timer Capture)

RETI ;Return from interrupt

UNDFLW: RBIT T1CO,CNTRL ;Reset timer underflow pending flag
. ; (Process Timer Underflow)
RETI ;Return from interrupt

;ERROR ROUTINE (NO INTERRUPT PENDING)
ERROR: RETI ;jReturn from interrupt
.SECT INTTABLE, ROM, ABS=01E0 ;VECTOR TABLE
;Set location counter to 01E0 Hex
.ADDRW ERROR ;Store Error routine vector address
cea ; {Store vector addresses 01lE2 - 01F5 Hex}
;Set location counter to 01F6 Hex
~ADDRW T1SERV ;Store T1PNDA routine vector address
e ; {Store vector addresses 01F8 - 01FF Hex}
.ENDSECT

13.3.2 External Event Counter Example

This mode of operation is very similar to the PWM Mode of operation. The only difference
is that the timer is clocked from an external source. This mode provides the ability to
perform control of a system based on counting a predetermined number of external

13-10 APPLICATION HINTS

events, such as searching for the nth sector on a disk or testing every nth part on an
assembly line. The code for this example is provided below.

. INCLD COP888XX.INC
.SECT EEC, ROM
;TIMER T1 CONFIGURATION
RBIT 3,PORTGC ;Configure G3/T1A as Hi-Z input
RBIT 3,PORTGD H
LD CNTRL, #00 ;Select timer T1 as external event counter
LD ICNTRL,#00 ;Disable T1B interrupt
LD TMR1LO, #COUNTO ;Timer Tl lower byte
LD TMR1HI,#COUNT1 ;Timer T1 upper byte
LD T1RALO,#Count0 ;Initialize Auto-reload R1A lower byte
LD T1RAHI,#Countl ;Initialize Auto-reload R1A upper byte
LD T1RBLO, #Count0 ;Initialize Auto-reload R1B lower byte
LD T1RBHI,#Countl ;Initialize Auto-reload R1B upper byte
SBIT T1CO0,CNTRL ;Start timer
LD PSW,#011 ;Enable timer T1A and global interrupts
SELF: JP SELF ;Wait for the n-th count
.SECT INTERRUPT, ROM, ABS=0FF ;TIMER INTERRUPT HANDLING ROUTINE
:Set location counter to 00FF Hex
VIS ;Vector to appropriate interrupt routine
; TIMER SERVICE ROUTINE
T1SERV: RBIT T1PNDA,PSW ;Reset T1A pending flag
RBIT T1CO,PSW ;Stop timer
. ; {Process timer interrupt}
. ; {Process timer interrupt}
SBIT T1CO,PSW ;Start timer
RETI ;Return from interrupt
;ERROR ROUTINE (NO INTERRUPT PENDING)
Error: RETI ;Return from interrupt
.SECT INTTABLE, ROM, ABS=01EQ0 ;VECTOR TABLE
;Set location counter to 01E0 Hex

.ADDRW ERROR ;Store Error routine vector address
- ; {Store vector addresses 01E2 - 01F5 Hex}
;Set location counter to 01F6 Hex
.ADDRW T1SERV ;Store T1PNDA routine vector address
e ; {Store vector addresses 01F8 - 01FF Hex}
.ENDSECT

13.4 TRIAC CONTROL

The COP888 family devices provide the computational ability and speed that is suitable
for intelligently managing power control. In order to control a triac on a cyclic basis, an
accurate time base must be established. This may be in the form of an AC 60Hz sync
pulse generated by a zero voltage detection circuit or a simple real-time clock. The
COPS888 family is suited to accommodate either of these time base schemes while
accomplishing other tasks.

Zero voltage detection is the most useful scheme in AC power control because it affords
a real-time clock base as well as a reference point in the AC waveform. With this
information it is possible to minimize RFI by initiating power-on operations near the AC
line voltage zero crossing. It is also possible to fire the triac only a portion of the cycle,
thus utilizing conduction angle manipulation. This is useful in both motor control and
light-intensity control.

APPLICATION HINTS 13-11

COP888 software is capable of compensating for noisy or semi-accurate zero voltage
detection circuits. This is accomplished by using delays and debounce algorithms in the
software. With a given reference point in the AC waveform, it becomes easy to divide the
waveform to efficiently allocate processing time.

These techniques are demonstrated in the following code listing. This application
example is based on the half cycle approach of AC power for triac light intensity control.
The code intensifies and deintensifies a lamp under program control.

This program example is not intended to be a final functional program. It is a general-
purpose light intensifying/deintensifying routine which can be modified for a light
dimmer application. The delay routines are based on a 10 MHz crystal clock (1 us
instruction cycle). The COP888’s 16-bit timer can be used for timing the half cycle of an
AC power line, and the timer can be started or stopped under software control. Timer T1
is a read/write memory mapped counter with two associated 16-bit auto-reload registers.
In this example, only one reload register is used because the timer is stopped after each
timer reload from R1A. Zero crossings of the 60 Hz line are detected and software
debounced to initiate each half cycle, so the triac is serviced on every half cycle of the
power line. This program divides the half cycle of a 60 Hz AC power line into 16 levels.
Intensity is varied by increasing or decreasing the conduction angle by firing the triac at
various levels. Each level is a fixed time which is loaded into the timer. Once a true zero
cross is detected, the timer starts and the triac is serviced.

A level/sublevel approach is utilized to vary the conduction angle and to provide a
prolonged intensifying period. The maximum intensity reached is at the maximum
conduction angle (level), and the time required to get to that level is loaded into the timer
in increments. Once a level has been specified, the remaining time in the half cycle is
then divided into sublevels. The sublevels are increased in steps to the maximum level
and the triac is fired 16 times per sublevel, thus creating the intensity time base. For
deintensifying, the sublevels are decremented.

;This is a general purpose light dimmer program
;it uses a 10 MHz clock (1 us instruction cycle time)

.INCLD COP888.INC
.TITLE TIMER, ‘TIMER APPLICATION EXAMPLE’

.SECT TRIAC, REG ; INITIALIZATIONS

TEMP: .DSB 1 ;Temporary storage location

LEVEL: .DSB 1 ;Level storage location

FIN: .DSB 1 ;Fire number storage location

REG1: .DSB 1 ;Registerl definition

.SECT MAIN, ROM

LD FIN,#000 ;Set fire number to zero

LD LEVEL, #040 ;Set sublevel to 40 Hex

LD PORTGC, #000 ;Configure Port G as all inputs

LD PORTGD, #004 ;Weak-up on pin G2

LD CNTRL, #080 ;Configure Timer T1 in autoreload mode

LD PSW,#000 ;Disable all interrupts

LD TMR1LO,#07D ;Initialize T1 and T1RA with 0.5mS delay

LD TMR1HI,#000 ;

LD T1RALO,#0EB ;

LD T1RAHI,#003 ;

;POWER UP SYNCHRONIZATION OR RESET SYNCH.

BEG: IFBIT 2 ,PORTGP ;If Bit G2 =1

JP HI ;then re-check bit

Jp BEG ;else keep looping to synch up 60Hz
HI: IFBIT 2 ,PORTGP ;If Bit G2 is still 1

Jp HI ;then wait until it is zero

13-12 APPLICATION HINTS

DOIT:

LO:

D1l:

INIT:

BEGG:

THER:

LP2:

LP3:

FIRE:

LP6:

LP5:

TWO:
HIl:

DELAY:
LOOP:

SUB:

IFBIT
JSR

NOP
NOP

LD
DRSZ

RET

LD

SUBC

LD
SUBC

DELAY
2,PORTGP
BEG

INIT

2, PORTGP

TIMER
A,FIN
A,#015
THER

A

A,FIN
FIRE
FIN,#000
A,LEVEL
A

A,LEVEL
A,LEVEL
A,#000

LP2

LP3

LEVEL, #040
FIRE
5,LEVEL
ADD

SUB

PORTD, #0FF
A, TEMP
A

A
A,#03

LP5

LP6

A

PORTD, #00
A, TEMP

2, PORTGP
HI

Lo

REG1,#00F
REG1
LOOP

A, TI1RALO
A,#07D

A, T1RALO

A, T1RAHI

A,#000

;else test for true zero cross

;TEST FOR TRUE ZERO CROSS (Valid Transition)
;Debounce for zero cross detection

;When Bit G2 = 0, perform debounce delay
;If Bit G2 is high after the delay

;then false alarm, go back to beginning
;else go start program

;Debounce 0 to 1

;If Bit G2 is high

;then go perform debounce delay

;else loop back and wait for a 1
;Debounce delay (clean transition)

;If Bit G2 is still 1

;then go start program

;else false alarm, keep debouncing

;MAIN ROUTINE FOR INTENSIFY/DE-INTENSIFY
;A true zero cross has been detected
;Delay for 1lms to get to MAX

;Load accumulator with fire number

;If the fire number equals 15

;then finished firing, continue on

;else increment fire number

;Save new fire number

;Keep firing

;Reset fire number to zero

;Load accumulator with sublevel number
;Decrement sublevel

;Save new sublevel

;Load sublevel back into accumulator

;If sublevel = MAX level

;then go reset level

;else go check level

;Reset level to 40 Hex

;Go fire (exit)

;If current level is greater than 1F Hex
;then MAX not yet reached, add delay
;else MAX has been reached, subtract delay
;No-operation

;No-operation

;FIRE SUBROUTINE

;Set Port D HIGH for 32uSec
;Save accumulator in temp location
;Clear accumulator

;Increment accumulator

;If accumulator equals three
;then 32uSec done, continue on
;else not done, keep looping
;Clear accumulator

;Set Port D low

;Restore accumulator

;If Bit G2 is high

;then go debounce from High
;else go debounce from Low

; DELAY SUBROUTINE

;Load Regl with OF Hex

;Decr Regl, If Regl not equal to 0
;then keep looping

;else return from delay routine

;DECREMENT THE TIMER BY THE DESIRED DELAY
;Load accumulator with value from T1RALO

;Subtract 7D Hex

;Store result in T1RALO

;Load accumulator with value from T1RAHI

;Subtract zero and borrow (if occurred)

APPLICATION HINTS 13-13

RC

RET

ADD: LD
ADC

LD
ADC
RC

RETSK

TIMER: SBIT
LP1: IFBIT
JP
Jp
LP4: RBIT
RBIT

.END

A, T1RAHI

A, T1RALO
A,#07D

A, T1RALO

A, T1RAHI

A,#000

A,T1RAHI

T1CO,CNTRL
T1PNDA, PSW
LP4
LP1
T1CO,CNTRL
T1PNDA,PSW

13-14 APPLICATION HINTS

;Reset carry flag
;Store result in T1RAHI
;Return from subtract routine

; INCREMENT THE TIMER BY THE DESIREd DELAY
;Load accumulator with value from T1RALO

;Add 7D Hex

;Store result in T1RALO

;Load accumulator with value from T1RAHI

;Add zero and carry bit

;Reset carry flag

;Store result in T1RAHI

;Return and skip from add routine

; TIMER Subroutine

;Start the timer

;If underflow (reload from R1A) occurred
;then go stop the timer

;jelse keep looping

;Stop the timer

;Reset the T1 source A pending flag
;Return from timer subroutine

;end of program

13.5 ANALOG-TO-DIGITAL CONVERSION USING ON-CHIP COMPARATOR

Some microcontroller applications require a low-cost, but effective way of performing
analog-to-digital conversion. A number of techniques for doing this are described in COP
NOTE 1: “Analog to Digital Conversion Techniques with COPS Family Microcontrollers”
and in Application Note 607: “Pulse Width Modulation A/D Conversion Techniques with
COP800 Family Microcontrollers”. These notes may be found in the Embedded
Controllers databook. This section explains how the COP888 devices that contain an on-
board comparator can be integrated into two of the solutions described in these notes: the
single slope A/D conversion technique and the pulse width modulation A/D technique.

Figure 13-5 shows the hardware connections for either type of A/D conversion technique.
The voltage to be measured, Vyy, is connected to the inverting terminal, COMPIN-, of the
comparator. The non-inverting terminal, COMPIN+, is connected to an RC network via
a current-limiting resistor. For the single slope technique, the comparator output pin,
COMPOUT is connected to the Timer T1A input pin. This is not required for the pulse
width modulation technique.

The principle of the single slope conversion technique is to measure the time it takes for
the RC network to charge up to the voltage level on the inverting terminal, by using
Timer T1 in the input capture mode. The cycle count obtained in Timer T1 can be
converted into real time if it is scaled by the COP8 clock frequency. If the COP8 is clocked
by a crystal, this parameter is known very accurately. Applications connected to the
power line using an RC clock can use the line frequency as a reference with which to
measure the RC clock. The time measurement is then converted into the voltage, either
by direct calculation or by using a suitable approximation.

T1A

IR I S
Tl IMERT1 |
POMPOUT

<

Vin

O COMPIN— [

Vce
COMPIN+ COPS8
Rref Rlim

Cref

cop8_atod_t1

Figure 13-5 A/D Conversion Using On-board Comparator and Timer T1

APPLICATION HINTS 13-15

This very low cost technique is ideally suited to cost-sensitive applications which do not
require high accuracy. The pulse width modulation A/D conversion technique will
improve the accuracy at the cost of a higher conversion time. Application Note 607
describes this technique in detail.

The accuracy can be improved further by using a low-cost MM74HC4016 to multiplex the
analog input voltage with an accurate voltage reference used for calibration. Replacing
the resistor in the RC network with a current source will linearize the charging curve,
offering better resolution.

The user must ensure that the input voltage supplied to the comparator lies within its
input common mode range, which is shown in the characterization curves in the
datasheet.

Before the start of conversion, the capacitor must be discharged. The program
reconfigures the COMPIN + pin as an output logic low to perform the discharge. Timer T1
is stopped and configured for input capture mode on a low-to-high transition. The T1A
register is cleared and pin T1A set up as a Hi-Z input. The comparator initialization is
performed. The conversion begins when timer T1 is started and the COMPIN+ pin is
configured back to an input.

The initial value of the comparator is zero. A capture event occurs when the RC voltage
rises above the input voltage. If desired, the Timer T1 interrupt can be enabled to
produce an interrupt on this capture event. The capture time can then be read and
converted into voltage. This measurement technique has a resolution of 8 bits if the value
of the timer is scaled to contain 1000 (or more) counts after five RC periods. The accuracy
is primarily dependent on the accuracy of the user’s estimation of the RC time constant,
the offset voltage, and the user’s approximation routine.

The following code example demonstrates how this technique is implemented in
assembly code. In this example, polling the Timer T1A pending flag is used instead of
interrupts. The 16-bit timer value is stored in REFHI:REFLO.

;PORTXC Addr of port config reg assigned comp alt. fun.
; PORTxXD Addr of port data reg assigned comp alt. fun.

. INCLD COP888XX.INC
.SECT REGDEC, REG
RO: .DSB 1
REF: .DSB 2
REFLO = REF
REFHI = REF+1
.SECT CONVRT, ROM ;DISCHARGE THE CAPACITOR
CONVRT: SBIT CMPINN,PORTxXC ;Configure COMPIN- as output
RBIT CMPINN,PORTXD ;Set COMPIN- low
DELAY: ;Wait for capacitor to discharge
LD RO, #020 ;Load register with 20 Hex
DRO: DRSZ RO ;Decrement register, if not equal to zero
JP DRO ;then keep looping, else
;SET UP THE COMPARATOR AND CONFIGURE T1A
STCMP: SBIT CMPOUT, PORTXC ;Configure COMPOUT pin as an output
RBIT CMPINP,PORTXC ;Configure COMPIN+ pin as an input
RBIT CMPINN,PORTXC ;Configure COMPIN- pin as an input
LD PORTXD, #00 ;Configure outputs low and inputs as Hi-2
RBIT T1A,PORTGC ;Configure T1A pin as an input
RBIT T1A,PORTGD ;Configure T1A pin as Hi-Z
; PRELOAD TIMER T1
LDTIM: LD B, #T1MRLO ;Load B pointer with T1 address

13-16 APPLICATION HINTS

LD [B+],#0FF ;Load Tl lower byte with FF Hex

LD [B],#0FF ;Load T1 upper byte with FF Hex
; START TIMER T1 AND CHARGE THE CAPACITOR
STIM: LD PSW,#00 ;Disable all interrupts
LD CNTRL, #040 ;Configure T1 for input capture mode, positive T1A
;WAIT FOR CAPTURE AND SAVE VALUE
WAITCl: IFBIT T1PNDA, CNTRL ;If capture occurred
JpP STORE1 ;then go store capture value
Jp WAITC1 ;else keep waiting
STORE1: RBIT T1PNDA,CNTRL ;Reset T1PNDA flag
LD A,T1RALO ;Read T1RA low byte
X A,REFLO ;Save value in REFLO
LD A, T1RAHI ;Read T1RA high byte
X A,REFHI ;Save value in REFHI
;WAIT FOR 2nd CAPTURE AND COMPUTE ELAPSED TIME
WAITC2: IFBIT T1PNDA,CNTRL ;If capture occurred
JP COMP ;then go compute elapsed time
JpP WAITC2 ;else keep waiting
COMP: ;Compute elapsed time
.ENDSECT ;End of example

13.6 BATTERY-POWERED WEIGHT MEASUREMENT

Figure 13-6 shows the block diagram of a simple weight scale application. This
implementation of weight measurement may be used with any COP888 device that has
the Multi-input Wakeup feature. The pressure sensor circuit is based on a buffered
Wheatstone bridge arrangement. A current source and a capacitor generate the linear
ramp for the A/D conversion. A crystal oscillator is required for an accurate time base. A
50% duty cycle signal is generated for the audible tone. A 24-segment LCD display
indicates the weight to the user. Four inputs are used for configuring the scale.

If the application is not in use, the COP888 is held in HALT mode. As soon as a weight is
applied to the system, SW1 closes and the COP exits the HALT mode via a Multi-Input
Wakeup pin. The MIWU pin is then reconfigured as an output to power up the sensor
circuit, thus power remains even when the switch is open. The measurement and display
are then performed. After completing the measurement and display routines, the
COP888 reconfigures the sensor power pin as a Wakeup pin, thereby disconnecting
power from the sensor circuit. The device then re-enters the HALT mode.

The 16-bit timer can be used to generate the interrupts required to refresh the LCD
display. A power-on reset circuit (not shown) is required in this application.

13.7 ZERO CROSS DETECTION

Zero cross detection is often used in appliances connected to the AC power line. The line
frequency is a useful time base for applications such as industrial timers or irons which
switch off if not used for five minutes. Phase-controlled applications require a consistent
timing reference in phase with the line voltage.

The COPS888 requires a square wave, magnitude Vg, at the same frequency as the
power line voltage, connected to a input port pin for a simple time base. For a phase-

APPLICATION HINTS 13-17

¢

SwWi1

A_J.:——/ HALT MODE

- \ - l » muLTiNPUT
= \J? WAKEUP

I 16-BIT TIMER |

Vce Vee

24 SEGMENT LCD DISPLAY
WITH 2-WAY MULTIPLEXING

Cref GENERAL
PURPOSE
/0
Vce
SOFTWARE
TRAP
2
- CORE
-
CRYSTAL OSCILLATOR D
—AMN—

T T

BUZZER

cop8_weight_measu

Figure 13-6 Battery-powered Weight Measurement

13-18 APPLICATION HINTS

control time base, this waveform should preferably be in phase with the line voltage,
although control is still possible if there is a predictable, constant phase lag, less than the
phase lag introduced by the load. The choice of zero cross detection circuit depends on
factors such as cost, the type of power supply used in the appliance, and the expected
interference.

The zero cross detection input can either be polled by software or can be connected to the
GO interrupt line. Polling the pin by software is the simplest technique and saves the
interrupt for another function, but has the disadvantage that the polling procedure can
be interrupted, causing inaccuracies in synchronization. Disabling the interrupt during
the polling is not always possible, as the interrupt may be required for the
implementation of other features.

Connecting the zero cross detection input to the external interrupt pin guarantees
synchronization. It has the additional advantage that a regular interrupt is generated,
which could interrupt the processor out of a fault condition. The interrupt routine only
needs to test the integrity of the stack to determine whether such a fault has occurred.

The following software example shows how software polling of the zero cross line is
implemented.

Z2CD:
LD B, #STATUS ;Save bytes using the B pointer
IFBIT SYNCHRO, [B] ;If SYNCHRO is 1, wait for a rising edge
JP WLOHI ;otherwise wait for a falling edge.
WHILO: IFBIT 3,PORTLP ;Wait for falling edge
JP WHILO
SBIT SYNCHRO, [B] ;SYNCHRO = 1, so wait for rising edge
JP ENDZCD ;next time.
WLOHI: IFBIT 3,PORTLP ;Wait for a rising edge
JP RSYNC
JP WLOHI
RSYNC: RBIT SYNCHRO, [B] ;SYNCHRO = 0, so wait for a falling edge
;next time.
ENDZCD: ;End of example

13.8 INDUSTRIAL TIMER

Figure 13-7 shows the block diagram for an industrial timer. The user turns the
potentiometer to set the required delay time. When the delay time has elapsed, a load is
switched on or off, as selected by the input switches. The time base is derived from the
power line using a simple zero cross detection circuit, thereby allowing the use of an
inexpensive RC clock instead of a crystal oscillator. There are two indicator diodes and a
buzzer.

The A/D conversion routine used by this industrial timer is based on the single slope
technique defined in Section 13.5, but it has an important difference. Instead of
connecting the variable resistor into a voltage divider circuit and measuring the voltage
using the single slope technique, the variable resistor forms part of the RC network. The
time that the variable RC circuit takes to exceed the fixed reference voltage is directly
proportional to the value of the resistor, simplifying the conversion from time into
resistance. The circuit as shown can be used to program a time proportional to the angle
of the potentiometer setting. The potentiometer can be replaced by a rotary switch
connected to a series of resistors, so that each position of the switch generates a different

APPLICATION HINTS 13-19

TWO INDICATOR LEDS

ZERO CROSS DETECTION
INTERRUPT
Vce Vce
A A
4 L4

O—— 9
TIMER T1

110V / 60Hz
240V / 50Hz

TIMING CONTROL

Vce

1)

WATCHDOG

HIGH SINK
OUTPUTS

HIGH-SIDE RELAY DRIVER

- Vce
Vrelay c

SOFTWARE
TRAP

'HT’\‘(’L‘?

USER SWITCHES

| - CORE _’,—E—‘Zlﬁ/
N i = —=O0

BUZZER

RC OSCILLATOR I

cop8_timer_app

Figure 13-7 Industrial Timer Application

13-20 APPLICATION HINTS

resistance. Here the COP888 can identify the switch positions if the difference in each
resistance for each position is greater than the inaccuracy in measuring the absolute
resistance.

13.9 PROGRAMMING EXAMPLES

This section is intended to be an overview of programming examples. For more detailed
and varied programming examples, refer to the Embedded Controllers Databook or the
Microcontroller Applications Engineering BBS(see Appendix D).

13.9.1 Clear RAM

The following program clears all RAM locations in the base segment except for the stack
pointer. The value of the argument to IFBNE may need to be adjusted, depending on the
size of RAM in specific family members.

COP888 PROGRAM TO CLEAR ALL RAM EXCEPT SP

CLRAM: LD OFC,#070 ;Define X-pointer as counter
LD B,#0 :Initialize B pointer
CLRAM2: LD [B+],#0 ;Load mem with 0 and incr B pointer
DRSZ OFC ;Decrement counter
JP CLRAM2 ;Skip if lower half RAM is cleared
LD B,#0F0 ;Point B to upper half of RAM
CLRAM3: LD [B+],#0 ;Load upper RAM half with 0
IFBNE #0D ;until B points to OFD (=SP)
JP CLRAM3 ;Skip if B=0FD
LD B, #0 ;Initialize B to 0

13.9.2 Binary/BCD Arithmetic Operations

The arithmetic instructions include the Add (ADD), Add with Carry (ADC), Subtract with
Carry (SUBC), Increment (INC), Decrement (DEC), Decimal Correct (DCOR), Clear
Accumulator (CLR), Set Carry (SC), and Reset Carry (RC). The shift and rotate
instructions, which include the Rotate Right through Carry (RRC), the Rotate Left
through Carry (RLC), and the Swap accumulator nibbles (SWAP), may also be considered
arithmetic instruction variations. The RRC instruction is instrumental in writing a fast
multiply routine.

In subtraction, a borrow is represented by the absence of a Carry and vice versa.
Consequently, the Carry flag needs to be set (no borrow) before a subtraction, just as the
Carry flag is reset (no carry) before an addition. The ADD instruction does not use the
Carry flag as an input. It should also be noted that both the Carry and Half Carry flags
(Bits 6 and 7, respectively, of the PSW control register) are cleared with RESET and
remain unchanged with the ADD, INC, DEC, DCOR, CLR, and SWAP instructions. The
DCOR instruction uses both the Carry and Half Carry flags. The SC instruction sets both
the Carry and Half Carry flags, while the RC instruction resets both these flags.

The following program examples illustrate additions and subtractions of 4-byte data
fields in both binary and BCD (Binary Coded Decimal). The four bytes from data memory

APPLICATION HINTS 13-21

locations 24 through 27 are added to or subtracted from the four bytes in data memory
locations 16 through 19. The results replace the data in memory locations 24 through 27.

These operations are performed both in binary and BCD. It should be noted that the BCD
preconditioning of adding (ADD) the hexadecimal value 66 is necessary only with the
BCD addition, not with the BCD subtraction. The binary coded decimal DCOR (Decimal
Correct) instruction uses both the Cary and Half Carry flags as inputs but does not
change the Carry and Half Carry flags. Also note that the #12 with the IFBNE
instruction represents 28 minus 16, since the IFBNE operand is modulo 16 (remainder
when divided by 16).

BINARY ADDITION

LD X,#16 ;No leading zero indicates decimal
LD B,#24
RC
LOOP: LD A, [X+]
ADC A,[B]
X A, [B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW ;OverFLow if C
BINARY SUBTRACTION
LD X,#010 ;Leading zero indicates hex
LD B,#018
SC
LOOP: LD A, [X+]
SUBC A, [B]
X A, [B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)
BCD ADDITION
LD X,#010 ;Leading zero indicates hex
LD B,#018
RC
LOOP: LD A, [X+]
ADD A,#066 ;Add hex 66
ADC A,[B]
DCOR A ;Decimal correct
X A, [B+]
IFBNE #12
JP LOOP
IFC
JP OVFLOW ;Overflow if C
BCD SUBTRACTION
LD X,#16 ;No leading zero indicates decimal
LD B,#24
sC
LOOP: LD A, [X+]
SUBC A, [B]
DCOR A ;Decimal correct
X A, [B+]
IFBNE #12
JP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)

13-22 APPLICATION HINTS

Note that the previous additions and subtractions are not “adding machine” type
arithmetic operations in that the result replaces the second operand rather that the first.
The following program examples illustrate “adding machine” type operations where the
result replaces the first operand. With subtraction, this entails the result replacing the
minuend rather that the subtrahend.

BINARY ADDITION

LD B,#16
LD X, #24
RC
LOOP: LD A, [X+]
ADC A, [B]
X A, [B+]
IFBNE #4
Jp LOOoP
IFC
JP OVFLOW ;overflow if C
BINARY SUBTRACTION
LD B,#010
LD X,#018
SC
LOOP: LD A, [X+]
X A,[B]
SUBC A, [B]
X A, [B+]
IFBNE #4
JpP LOOP
IFNC
JP NEGRSLT ;Neg. result if no C (No C = Borrow)
BCD ADDITION
LD B,#010
LD X,#018
RC
LOOP: LD A, [X+]
ADD A,#066
ADC A, [B]
DCOR A
X A, [B+]
IFBNE #4
JP LOOP
IFC
JP OVFLOW ;Overflow if C
BCD SUBTRACTION
LD B,#16
LD X,#24
sC
LOOP: LD A, [X+]
X A,[B]
SUBC A,[B]
DCOR A
X A, [B+]
IFBNE #4
JP LOOP
IFNC
Jp NEGRSLT ;Neg. result if no C (No C = Borrow)

APPLICATION HINTS 13-23

The following hybrid arithmetic example adds five successive bytes of a data table in
program memory to a two-byte SUM, and then subtracts the SUM from a two-byte total
TOT. Assume that the table is located starting a program memory address 0401, while
SUM and TOT are at RAM data memory locations 1, 0 and 3, 2, respectively. The
program is encoded as a subroutine.

.SECT MATH, RAM
MATHMEM: .DSB4 ;CONSTANT DECLARATIONS

SUMLO = MATHMEM ;Sum lower byte storage location

SUMHI = MATHMEM+1 ;Sum upper byte storage location

TOTLO = MATHMEM+2 ;Total lower byte storage location

TOTHI = MATHMEM+3 ;Total upper byte storage location

.SECT CODE, ROM, ABS=0401

;ROM TABLE

.BYTE 102 ;Store 102

.BYTE 41 ;Store 41

.BYTE 31 ;Store 31

.BYTE 26 ;Store 26

.BYTE 5 ;Store 5

;PERFORM ADDITION AND SUBTRACTION

ARITH1: LD X,#5 ;Set up ROM table pointer

LD B,#SUMLO ;Set up sum pointer
LOOP: RC ;Reset carry flag

LD A,X ;Load ROM pointer into accumulator

LAID ;Read data from ROM

ADC A,[B] ;Add SUMLO to ROM value

X A, [B+] ;jStore result in SUMLO, point to SUMHI

CLR A ;Clear accumulator

ADC A,[B] ;Add SUMHI and carry bit to the accumulator

X A,[B-] ;Store result in SUMHI, point to SUMLO

DRSZ X ;jDecrement ROM pointer, If not equal to zero

JP LOOP ;then repeat the loop

SC ;jelse set the carry flag

LD B,#2 ;Load B pointer with 2 (point to TOTLO)
LUP: LD A, [X+] ;Load accumulator with subtrahend

X A,[B] ;Reverse operands for subtraction

SUBC A,[B]) ;Subtract

X A, [B+] ;Increment minuend pointer

IFBNE #4 ;If B pointer not equal to 4

JP LUP ;then repeat the loop

RET ;else return

13.9.3 Binary Multiplication

The following program listing shows the code for a 16-by-16-bit binary multiply
subroutine. The multiplier starts in the lower 16 bits of the 32-bit result location. As the
multiplier is shifted out of the low end of the result location with the RRC instruction,
each multiplier bit is tested in the Carry flag. The multiplicand is conditionally added
(depending on the multiplier bit) into the high end of the result location, after which the
partial product is shifted down one bit position following the multiplier. Note that one
additional terminal shift cycle is necessary to align the result.

13-24 APPLICATION HINTS

COP888 MULTIPLY (16X16) SUBROUTINE
MULTIPLICAND IN [1,0] MULTIPLIER IN [3,2]
PRODUCT IN [5, 4, 3, 2]

.SECT MEMCNT, REG

CNTR: .DSB 1
. SECT CODE, ROM
MULT: LD CNTR, #17
LD B, #4
LD [B+],#0
LD [B],#0
LD X, #0
RC
MLOOP: LD A, [B]
RRC A
X A, [B-]
LD A, [B]
RRC A
X A, [B-]
LD A, [B]
RRC A
X A,[B-]
LD A, [B]
RRC A
X A,[B]
LD B,#5
IFNC
JP TEST
RC
LD B, #4
LD A, [X+]
ADC A, [B]
X A, [B+]
LD A, [X-]
ADC A, [B]
X A, [B]
TEST: DRSZ CNTR
JP MLOOP
RET

13.9.4 Binary Division

The following program shows a subroutine for a 16-by-16-bit binary division. A 16-bit
quotient is generated along with a 16-bit remainder. The dividend is left shifted up into
an initially-cleared 16-bit test window where the divisor is test-subtracted. If the test
subtraction generates no high-order borrow, then the real subtraction is performed with
the result stored back in the test window. At the same time, a quotient bit (equal to 1) is
inserted into the low end of the dividend window to record that a real subtraction has
taken place. The entire dividend and test window is then shifted up (left shifted) one bit
position with the quotient following the dividend.

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated as straight-line code rather than a loop in order to optimize throughput time.

APPLICATION HINTS 13-25

COP888 DIVIDE (16X16)

SUBROUTINE
DIVIDEND IN [3,2]

DIVISOR IN [1,0]

QUOTIENT IN [3,2]
REMAINDER IN [5,4]

CNTR:

DIV:

LSHFT:

TSUBT:

SUBT:

TEST:

With a division where the dividend is larger than the divisor (relative to the number of
bytes), an additional test step must be added. This test determines whether a high-order
carry is generated from the left shift of the dividend through the test window. When this
carry occurs, the program branches directly to the SUBT subtract routine. This carry can
occur only if the divisor contains a high-order bit. Moreover, the divisor must also be
larger than the shifted dividend when the shift has placed a high-order bit in the test
window. When this case occurs, the TSUBT test subtract shows the divisor to be larger
than the shifted dividend and no real subtraction occurs. Consequently, the high-order
bit of the shifted dividend is again left shifted and results in a high-order carry. This test
is illustrated in the following program for a 24-by-8-bit binary division.

.SECT
.DSB 1
.SECT
LD

LD

LD

LD

LD

RC

LD

LD
ADC

X

LD
ADC

X

LD
ADC

LD
LD
SUBC
X

LD
SBIT
DRSZ
JMP
RET

MEMCNT, REG
CODE, ROM

CNTR, #16
B, #5

B, #2

DA I S I S

13-26 APPLICATION HINTS

Note that the four left shifts (LD, ADC, X) in the LSHFT section of the program are
repeated with the JP jump to LUP instruction in order to minimize program size.

COP888 DIVIDE (24X8) SUBROUTINE
DIVIDEND IN [2,1,0]

DIVISOR IN [4]

QUOTIENT IN [2,1,0]

REMAINDER IN [3]

.SECT MEMCNT, REG

CNTR: .DSB 1
.SECT CODE, ROM
DIV: LD CNTR, #24
LD B,#3
LD [B],#0
LSHFT: RC
LD B,#0
LUP: LD A, [B]
ADC A, [B]
X A, [B+]
IFBNE #4
JP LUP
IFC
Jp SUBT
TSUBT: SC
LD B,#3
LD A, [B+]
SUBC A, [B]
IFNC
Jp TEST
SUBT: LD A, [B-]
X A,[B]
SUBC A, [B]
X A, [B]
LD B,#0
SBIT 0,[B]
TEST: DRSZ CNTR
JMP LSHFT
RET

13.10 EXTERNAL POWER WAKEUP CIRCUIT

Power-on wakeup is a technique used in battery powered applications such as electronic
keys or digital scales to save battery power. Instead of using the HALT mode when the
application is not in use, the COP device is powered off. If there is only one input switch
in the application, the implementation is simple. This switch is put in series with the
battery, providing power to the circuit when the switch is closed.

If there is more than one switch, power-on wakeup can be achieved by using an NPN
transistor and one resistor per switch as shown in Figure 13-8. Here, the circuit ground
is connected to the battery negative terminal via the NPN transistor. If the base is
floating, it will not conduct. If the base is pulled to V¢ via a current-limiting resistor, it
will conduct, powering up the circuit.

An alternative technique is shown in Figure 13-9. Here the positive terminal of the
battery is connected to the V¢ line via a switch, a diode and two resistors per line. If a
switch is pressed, power is applied to the V¢ line. The pull-down resistors pull any ports
connected to open switches to ground. If the switch is closed, the voltage on the switch
will be V¢ plus the diode voltage drop. If this potential were directly applied to the Port

APPLICATION HINTS 13-27

Vee Vee Vee

vy

Vee 3
CKI RESET
coPs
Vce
(LLL
< S <<
—e e Lo
S M L1
0——0/= L2
) - o s Vee
]
GND J—

cop8_pow_wake_npn

Figure 13-8 Power Wakeup Using An NPN Transistor

13-28 APPLICATION HINTS

Vce

Vee

RESET

coPs

MA
LAAd

H

<
<
<
CKI
X1 =
+
0—./ Wy L1
S W—] L2
o e .A'A'A' L3
s s =
i i i o

cop8_pow_wake_dio

Figure 13-9 Power Wakeup Using Diodes And Resistors

APPLICATION HINTS 13-29

L pin, the COP device would be driven outside the operating specification. Therefore,
series protection resistors are used on all Port L pins connected to the switches.

13.11 WATCHDOG RESET CIRCUIT

The following circuit is recommended for connecting the WDOUT pin to the RESET pin
(Figure 13-10). This circuit guarantees that the COP888 receives a valid reset signal as
the result of a Watchdog/Clock Monitor error. With this circuit, the RESET is held low a
minimum of 16 instruction cycles even if C; fails to discharge completely. The 2.5kQ
resistor limits the current into the WDOUT pin. This prevents damage to the WDOUT
pin during the discharge of C;. The components R; and C; are chosen to ensure a reset
risetime of five times the power supply risetime.

Vece
RESET § R,
2.5k
copsss cb———’\/\/\l————o
*c
WooUT -
GND

888_wdog_reset_cirt

Figure 13-10 Watchdog Reset Circuit

13.12 INPUT PROTECTION ON COP888 PINS

The COP888 input pins have internal circuitry for protection from ESD. The internal
circuitry is shown in Figures 13-11 and 13-12.

The input protection circuitry is implemented with the P_channel transistors. The
equivalent diode circuit is shown in Figure 13-13.

When the inputs are tri-stated and the input voltage on the pin is between GND and V¢,
the input protection diodes are off. The only current drawn into or out of the pin is
leakage current. If the input is expected to be below GND and/or above V¢, an external
series resistor must be used to limit the input current below the maximum allowable
current.

13-30 APPLICATION HINTS

— 0 Ve —1— Vee

, B

S

g<}

Figure 13-11 Ports L/C/G Input Protection (Except G6)

cop8_input_pro_ports

)
1
_ <

A

1

A

cop8_input_pro_port_i

Figure 13-12 Port I Input Protection

APPLICATION HINTS 13-31

A

cop8_input_pro_dio

Figure 13-13 Diode Equivalent of Input Protection

In addition to limiting the input current to below the maximum latchup spec (specified
in the datasheet), the user should also consider the fact that drawing excessive
continuous current into the pin, even though below the maximum latchup current, may
cause overstress.

A typical example of drawing continuous current is in an automotive application where
the ignition signal (battery) is connected to an input pin through a series resistor.
Assuming a 100K series resistor with a tolerance of +10%, the worst case resistor value
is 90K. The battery voltage is assumed to be 12V for normal operation and 24V for a
“jump start.” The high voltage applied to the pin causes the on-chip protection diode to
be forward biased, resulting in current into the associated V¢ metal trace. Based on a
diode threshold voltage of 0.6V, the voltage at the pin will be V¢ + 0.6V. Based on a V¢
value of 5V, the input current can be calculated as follows:

Normal Operation:
[12- (5+0.6)] ,
== = A
Input current 90K m
Jump Start:
24 + (5+0.6)]
I = [—————————- = 204’
nput current 90K 04p'A
A study of the internal circuitry indicates that the input pin can draw about 200 pA
without causing any damage or reliability problem.

Another approach is to use appropriate external circuitry that prevents the input
protection diodes from being biased. An example is shown in Figure 13-14.

The resistors are required to drop the +12V and the diode prevents the —12V from being
applied to the pin.

For Vi = 12V 5% and Vg = 5V = 5%, the resistor values are calculated to be:
Ry = 47K +5%
Ry = 82K +5%

13-32 APPLICATION HINTS

12V O—D}—J\N\ﬁ * INPUT

COP8

cop8_input_pro_ex

Figure 13-14 External Protection of Inputs

This analysis does not apply to G6, RESET, and CKI which do not have the protection
diodes. Implementation of the above circuit will result in a Vi that is between 0.7 V¢
and Vg, and a Vpg, that is between Vgg (0V) and 0.2 V.

13.13 ELECTROMAGNETIC INTERFERENCE (EMI) CONSIDERATIONS

13.13.1 Introduction

CMOS has become the technology of choice for the processors used in many embedded
systems due to its capability for low standby power consumption. However, CMOS is
prone to high current transients on the power supply as the internal logic switches.
These transients can easily be the source of high-frequency emissions from the system.
The system designer should anticipate and minimize unwanted electromagnetic
interference (EMI).

13.13.2 Emission Predictions

“EMI in a typical electronic circuit is generated by a current flowing in a loop configured
within the circuit. These paths can be either V-to-GND loops or output-to-GND loops.
EMI generation is a function of several factors. Transmitted signal frequency, duty cycle,
edge rates, and output voltage swings are the major factors of the resultant EMI levels.”!

1. “FACT™ Advanced CMOS Logic Databook”, National Semiconductor, 1989

APPLICATION HINTS 13-33

The formula for predicting the Electric Field emissions from such a loop is as follows:

Bl = 1.32 x IO_ZA (Freq)2 . (14+ (ﬁj) 2) 1/2

where:
* | E|pmax is the maximum E-field in the plane of the loop in uV/m
* Iis the current amplitude in milliamps
* A is the loop area in square cm
*) is the wavelength at the frequency of interest in meters
* D is the observation distance in meters
* Freq is the frequency in MHz
* and the perimeter of the loop P << A.

Applying this equation to a single standard output for a National Semiconductor
Microcontroller, and performing a Fourier analysis of the output switching at a frequency
of 20 MHz, yields the results shown in Table 13-1. These calculations assume a trace
length of 5 inches, a board thickness of 0.062 inches and a full ground plane. The load
capacitance is 100 pf.

Table 13-1 Electric Field Calculation Results

Harmonic | Current | |E|yax | | E|Max
(MHz) (mA) | WW/M) | (dBuV/M)
20 37.56 83 18.4
40 3.66 0.3 -10.2
60 26.13 44.2 33.0
80 4.44 0.6 -4.4
100 16.82 80.2 38.1
120 4.71 20 6.0
140 11.21 104.0 40.4
160 4.86 5.8 15.2
180 7.82 127.4 42.1

Note that the assumption is made that the output is switching at 20 MHz, which is rarely
the case for a port output. There is noise, however, on the output at these frequencies due
to switching within the device. This is the noise which is coupled to the output through
Ve and GND. Another point to keep in mind is that rarely does one single output switch,
but usually several at one time, thus adding the effective magnetic fields from all the
outputs which are switching.

13-34¢ APPLICATION HINTS

Accurate analysis requires characterization of the noise present at the output due to V¢
or GND noise which is dependent on many factors, including internal peripherals in use,
execution code, and address of memory locations in use.

13.13.3 Board Layout

There are two primary techniques for reducing emissions from within the application.
This can be done either by reducing the noise or by controlling the antenna. Control of
the antenna is accomplished through careful PC board layout.

General

Standard good PC layout practices will go a long way toward reducing emissions. Traces
carrying large AC currents (such as signals with fast transition times, that drive large
loads) should be kept as short as possible. Traces that are sensitive to noise should be
surrounded by ground to the greatest extent possible. Ground and V¢ traces should be
kept as short and wide as possible to reduce the supply impedance.

Ground Plane

One of the most effective ways to control emissions through board layout is with a ground
plane. The use of a plane can help by providing a return path for fast switching signals,
thus reducing loop size for both power and signals.

Multilayer Board

The best way to provide a ground plane is through the use of a multilayer printed circuit
board. The large area and the proximity of the Vo and GND planes provide additional
decoupling for the power, and provide effective return paths for both power and signals.

The problem with the use of a multilayer board, particularly in consumer related
industries, is cost. Due to the volumes involved, an addition of several dollars to the cost
of an item may be prohibitive.

13.13.4 Decoupling

Control of the emitted noise can be accomplished by several techniques, including
decoupling, reduced power supplies, and limitation of signal strength by the addition of
series resistance.

It is important to take the time to properly design the decoupling for CMOS processors.
Two decoupling techniques can and should be used to minimize both voltage and current
switching noise in the system.

Capacitive Decoupling

Capacitive decoupling is commonly used to control voltage noise on the Ve and GND
lines of the board, but if the decoupling is properly designed and is kept as close as
possible to the power pins of the device, it can also reduce the effective loop area and thus

APPLICATION HINTS 13-35

the antenna efficiency. Capacitive decoupling can prevent high-frequency current
transients from being seen by the power supply.

One factor of capacitive decoupling which is often overlooked is the frequency response
of the capacitors. Each capacitor, dependent on value, lead length, and dielectric
material, possesses a series resonant frequency beyond which the device has inductive
characteristics. This inductance inhibits the capacitor from responding quickly to the
current needs of the processor and forces the current to use the longer path back to the
main power supply.

These inductive characteristics can be countered by the addition of extra capacitors of
different values in parallel with the original device. As the value of the capacitor
decreases (for capacitors of similar manufacture), the resonant frequency increases.

Placing multiple decoupling capacitors across the power pins of the processor can
effectively improve the high frequency performance of the decoupling network.
Capacitance values are normally selected which are separated by a decade. However, it
is best to check the specifications of the capacitors which are used.

Inductive Decoupling

Another very effective method of decoupling which is rarely used is inductive decoupling.
The proper placement of ferrite beads between the decoupling capacitors and the
processor can significantly reduce the current noise on the power pins.

The use of inductive decoupling, which will increase the series impedance of the power
supply, appears to be contradictory to the effect of capacitive decoupling. However, the
purpose of inductive decoupling is to force nodes internal to the processor, which are not
switching, into providing the charge for the nodes which are switching.

Ferrite beads are very effective for this type of decoupling due to their lossy nature.
Rather than storing the energy and returning it to the circuit later, ferrites will dissipate
the energy as a resistor.

One should be aware of potential repercussions from the use of any type of series
isolation from the power supply. Due to the reduced V¢ which may be present during
switching transients, interfacing to other devices in the system may be a problem. Since
the Vi should only be reduced for the duration of the switching transient, this should
only be a problem if the other devices have especially sensitive and fast-responding
inputs. :

13.13.5 Output Series Resistance

The addition of resistance in series with outputs can have a significant effect on the
emissions caused by the switching of the outputs.

Outputs that drive large capacitive loads can have a lot of current flowing when they
switch. While the series resistance may slow the switching speed of the node and thus
affect the propagation delay, it can also have a large effect on emissions by reducing the
amplitude of the current spike that charges or discharges the load.

13-36 APPLICATION HINTS

13.13.6 Oscillator Control

One very definite source of emissions is the system clock. The oscillator is intended to
switch at high speed and therefore will emit some noise. Keeping the circuit loop of the
oscillator as small as possible will help considerably.

Ceramic resonators are available with the capacitive load included in a single three
terminal package. The use of these devices and placing them right next to the processor
can reduce emissions as much as 10 dB.

RC oscillators are particularly troublesome for emissions due to the high transient
current when the processor turns on the N-channel device that discharges the capacitor.
The transistor is meant to be large and to turn on strongly in order to discharge the
capacitor as quickly as possible. This allows simple control over the frequency of
oscillation but causes difficulty for the designer of systems for EMI-sensitive
applications.

13.13.7 Mechanical Shielding

A last resort for controlling emissions is the addition of mechanical shielding. While
shielding can be effective and can be easier from an electrical design standpoint, the
implementation and installation of a proper electromagnetic shield can be excessively
costly and time consuming.

It is much better to design the system with the control of emissions in mind from the start
rather than to apply bandages when it is time to begin production.

13.13.8 Conclusion

While electromagnetic emissions can be a problem for the designer of any electronic
system, it is particularly troublesome in the design of high speed CMOS systems. With
knowledge of the primary sources of noise, and the ways to combat that noise, it is
possible to design and build systems which are electromagnetically quiet.

Very few references to specific values of capacitance, resistance, or inductance have been
made in this document. The reason for this is that a value which works well in one
application may not be effective in another. The best way to determine the values which
will work well for a particular application is by experimentation.

APPLICATION HINTS 13-37

Appendix A
DEVELOPMENT SUPPORT

A.1 INTRODUCTION

This appendix describes the variety of hardware and software tools available for use in
developing applications with the COP888 devices. Included are tools developed by
National and other vendors.

A.2 DEVELOPMENT HARDWARE

Two hardware development environments for National’'s COP888 microcontrollers are
available from MetaLink Inc. The IceMASTER COP8 Model 400 is a full feature in-
circuit emulator that provides state-of-the-art emulation capabilities. The COP8 Debug
Module is a low cost tool that provides a subset of the features available on the COP8
Model 400. The Debug Module also supports programming of COP8 devices.

A.2.1 COPS8 Model 400 In-Circuit Emulator

The MetaLink iceMASTER™ -COP8 Model 400 In-Circuit Emulator for the COP8 family
of microcontrollers features high-performance operation, ease of use, and an extremely
flexible user interface for maximum productivity. Interchangeable probe cards, which

connect to the standard common base, support various configurations and packages of
the COP8 family.

The iceMASTER provides real-time, full-speed emulation up to 10 MHz, 32K bytes of
emulation memory, and 4K frames of trace buffer memory. The user may define as many
as 32K trace and break triggers, which can be enabled, disabled, set, or cleared. They can
be simple triggers based on code or address ranges or complex triggers based on code
address, direct address, opcode value, opcode class, or immediate operand. Complex
breakpoints can be ANDed and ORed together. Trace information consists of address bus
values, opcodes, and user selectable probe clips status (external event lines). The trace
buffer can be viewed as raw hex or as disassembled instructions. The probe clip bit values
can be displayed in binary, hex, or digital waveform formats.

During single-step operation, the dynamically annotated code feature displays the
contents of all accessed (read and write) memory locations and registers, as well as flow-
of-control direction change markers next to each instruction executed.

The iceMASTER’s performance analyzer offers a resolution of better than 6 us. The user
can easily monitor the time spent executing specific portions of code and find “hot spots”
or “dead code”. Up to 15 independent memory areas based on code address or label ranges
can be defined. Analysis results can be viewed in bar graph format or as actual frequency
counts.

DEVELOPMENT SUPPORT A-1

Emulator memory operations for program memory include single-line assembler,
disassembler, view, change, and write to file. Data memory operations include fill, move,
compare, dump to file, examine, and modify. The contents of any memory space can be
directly viewed and modified from the corresponding window.

The IceMASTER comes with an easy-to-use windowed interface. Each window can be

sized, highlighted, color-controlled, added, or removed completely. Commands can be

accessed via pull-down-menus and/or re-definable hot keys. A context-sensitive

hypertext/hyperlinked on-line help system explains clearly the available options from
" within any window.

The iceMASTER connects easily to a PC via the standard COMM port. The 115.2K baud
serial link keeps typical program download time under 3 seconds.

A.2.2 COPS8 Debug Module

The COP8 Debug Module is a low cost tool for designing, debugging, emulating and
programming COP8 microcontrollers. The Debug Module features an emulator that can
be connected to a target system or operated in a stand alone mode. It also features on-
board circuitry for programming COP8 EPROM devices.The host for the Debug Module
is a standard PC operating in a DOS environment. The Debug Module is connected to the
PC via an RS-232C serial channel at 9600 baud. Four versions of the Debug Module are
available to support the most popular COP8 family members.

The Debug Module offers full-speed, real-time emulation up to 10MHz. It is driven by the
same user-friendly windowed interface available on the IceMASTER-400. Code
developed with National’s COP8 Assembler/Linker or ByteCraft’s C-compiler may be
downloaded to the Debug Module’s 32Kbyte emulation memory in HEX, COF or COD
format. The Debug Module supports 8 breakpoints at user-specified program memory
addresses. It utilizes the INTR instruction to implement breakpoints in software. This
causes some limitations in code execution. While the COPS8 is breakpointed, you may
examine and modify on-chip RAM and registers. The Debug Module has a 100 frame
trace buffer for capturing information during code execution. (One frame captures
information from one instruction.) The Debug Module does not support complex
breakpoints, hardware breakpoints or extended trace memory. These and other
additional capabilities are offered by the IceMASTER-400.

The PROM programmer available on the Debug Module supports most COP8 EPROM
devices. The operation of the programmer is under the control of the host software on the
PC. The programmer is capable of transferring code from the Debug Module emulation
memory to a device or vice-versa. The high programming voltage (Vpp) may be supplied
externally or the Debug Module board may be configured to generate the needed voltage.

A.2.3 Ordering Information

For ordering information on the Metalink iceMASTER system, refer to the COP8 device
datasheets, or contact Metalink directly under the following USA numbers:

Phone: (602) 926-0797 FAX: (602) 926-1198

Alternatively, you may contact your local National sales office for ordering information.

A-2 DEVELOPMENT SUPPORT

A.3 DEVELOPMENT SOFTWARE

National offers a number of software development tools for use in generating COP888
microcontroller code. The following sections contain information about these tools.

A3.1 COPS8 Assembler/Linker/Librarian Package

National Semiconductor offers a relocatable COP8 macro cross assembler. The assembler
package includes a linker and librarian. It runs on industry standard compatible PCs in
the DOS environment and generates full symbolic debugging information in the industry
standard COFF (common object file format) format. This format can be directly used in
the MetaLink iceMASTER emulators. The Assembler package includes utilities to view
the symbolic information embedded in the COFF file, and to generate a HEX or LM file
for programming the COPS8 parts.

The macro assembler generates relocatable object files with or without embedded
symbolics. The librarian can be used to generate and maintain object libraries containing
files generated by the assembler. The linker is used to generate absolute download files
from object files and object libraries.

Table A-1 Assembler/Linker/Librarian ordering information

Part Number Description Manual

COPS8-DEV-IBMA | COP8 Assembler/Linker/Librarian 424421632-001
for IBM PC/ AT or compatible

A.3.2 COPS8 C-Compiler

National offers the Bytecraft COPS8C Code Development system. This system is a
complete C compiler and integrated development environment. It features an expert
system based optimizer and supports all members of the COP8 family of
microcontrollers. Additional features include:

» Powerful integrated editor

+ Code consistency checks against target hardware definitions
* Linker and built-in macro assembler

« Support for interrupt routines

+ Symbol table information for source level debugging

* C enhancements specific to the COP8 instruction set

DEVELOPMENT SUPPORT A-3

Ordering information is shown below:

Table A-2 COP8C Compiler Ordering Information

Part Number Description
COP8C Bytecraft COP8C compiler with
manuals for IBM PC/XT, AT or com-
patible

This compiler can be obtained from National or ordered directly from Bytecraft at (519)
888-6911.

A.3.3 NeuFuz4

NeuFuz4 is a neural network based fuzzy logic design and development system. It is
based on National’s proprietary NeuFuz technology that learns a system’s behavior and
then automatically generates fuzzy logic rules and membership functions. Determining
the proper set of fuzzy rules and membership functions required to adequately describe
a system’s behavior is the most difficult step in fuzzy logic design. NeuFuz4 uses a neural
network’s learning and generalization capability to accomplish this task. NeuFuz4 also
provides graphical on-line capabilities to verify, tune and optimize the fuzzy logic design
model generated for an application. NeuFuz4 can also be used as a general purpose
learning system to produce solutions that can be implemented in fuzzy logic or directly
in a neural network. NeuFuz4 translates the fuzzy logic rules and membership functions
it generates into COP8 assembly language code.

Table A-3 NeuFuz4 Ordering Information

Part Number Description
NF2-C8A-KIT NeuFuz4 Learning Kit
NF4-C8A NeuFuz4 Software
NF4-C8A-SYS NeuFuz4 Software and COP8 Debug
Module

A4 DEVELOPMENT SUPPORT

Appendix B

FORM, FIT & FUNCTION EMULATORS

B.1 EMULATOR DEVICES

National Semiconductor offers form, fit and function single-chip emulators for all
members of the COP888 family. These devices may be used during the development
phase of a design project to verify application hardware and software. The available FFF
emulators are guaranteed to meet the functional specs of the actual COP888 devices
emulated. However, there MAY be some variation in electrical characteristics due to the
replacement of the ROM with programmable memory. Variations could include: reduced
operating voltage range, reduced operating frequency range, reduced operating
temperature range, increased EMC emissions or increased ESD susceptibility. There
may also be some variation in the package dimensions. The footprint of the emulation
package is always matched to the production device package.

For information on the latest available emulators for a specific device, please contact
your local National sales representative or local distributor.

B.2 EMULATOR PROGRAMMING

The following manufactures have programmers certified by National for programming
COP888 FFF emulators:

Table B-1 Programmer Information

Manufacturer USs European Asian
Product Contact Contact Contact
Metalink 602-926-0797 49 8141-1030 852 737-1800
Debug Module (Germany) (Hong Kong)
Xeltek 408-745-7974 49 2041-684758 | 65-276-6433
Superpro (Germany) (Singapore)
BP Microsystems 800-225-2102 +49 89 857 852 388-0629
EP-1140 6667 (Hong Kong)
(Germany)
Data I/O 800-322-8246 31 2062-2866 33 432-6991
Unisite System 29 (Europe) (Japan)
Unisite System 39 49 8985-8020
(Germany)
ABCom 89 808707
COP8 Programmer (Europe)

FORM, FIT & FUNCTION EMULATORS B-1

Table B-1 Programmer Information

Manufacturer US European Asian
Product Contact Contact Contact
System General 408-263-6667 31921-7844 2 917-3005
Turpro-IFX (Switzerland) (Taiwan,
Turpro-APRO Taipei)

B-2 FORM, FIT & FUNCTION EMULATORS

Appendix C
ELECTRICAL CHARACTERIZATION DATA

This appendix presents characterization data for the COP888 Feature Family members.
All graphs in this appendix apply to the entire COP888 Feature Family unless otherwise
noted.

Characterization data is information gained from testing a wide range of sample of parts.
Most tests are performed over the full temperature and operating voltage range of the
COP888 devices. All information provided in the graphs represents typical values. Most
parts will meet these typical values. However, National Semiconductor does not
guarantee these values on all parts. Guaranteed numbers are provided in the AC and DC
Electrical Characteristics tables found in every datasheet. Guaranteed numbers are
tested on every device shipped to our customers.

COP888 Dynamic - Idd vs Vcc (Crystal Clock Option)

10
9
8
7
E 6 10 MHz,
o
3 i ﬁ -
3 //1MHz
o = I e
1
—
0

Vcee (V)

ELECTRICAL CHARACTERIZATION DATA C-1

COP888 Idle - Idd vs Vcc (Crystal Clock Option)

3.5

1 MHz

Idd (mA)
N

1 / 4 MHZ

Vcee (V)

COP888 Halt - Idd vs Vcc

1.8

1.6

14 +85°C|

1.2

Idd (uA)

/ ‘4000
0.8

0.6

0.4

0.2

Vee (V)

C-2 ELECTRICAL CHARACTERIZATION DATA

lon (MA)

loL (MA)

N W A2 0 O N ®©® ©

-

Port L/C/G Push-Pull Source Current

Vce|= 6.0V
Viee = 4.5V \
—__Vec=25V § \
1 2 3 4 5 6
Vou V)

Port L/C/G Push-Pull Sink Current

_—Vdc = 6.0V,

— Vdc = 4.5\

0.5 1 1.5 2 25 3 3.5

Vo V)

ELECTRICAL CHARACTERIZATION DATA

C-4

120

100

80

60

Ipup (UA)

40

20

25

20

15

lon (MA)

10

Port L/C/G Pull-up Source Current

MAX —— |

MIN ——— |

MAX— Vcc =6

.0V

MIN ﬁL\\Vcc = 4.5\

MAX—

MIN —

)

Vee = 2.5V
N N

1 2 3 4 5

Vou V)

Port D Source Current

T Yec=6.0v

—~——__)cc = 4.5V
\

[~ Vcc = 2.5
™

Vou V)

ELECTRICAL CHARACTERIZATION DATA

lor (MA)

45
40
35
30
25
20
15
10

Port D Sink Current

Vce =|6.0V

Vce = 4.5V

— |Vce =[2.5V

0.5

15 2 25

Vo V)

ELECTRICAL CHARACTERIZATION DATA

3 3.5

45

C-5

C-6 ELECTRICAL CHARACTERIZATION DATA

Appendix D
TECHNICAL SUPPORT

D.1 DIRECT TECHNICAL SUPPORT
Technical support personel may be contacted at:
800 272-9959 (US) U.S., Canada and South America
49 8141 103-300 (Germany) Europe and Isreal
852 737-1800 (Hong Kong) South East Asia, Australia, New Zealand and India
03 3299-7000 Japan
(55-11) 212-5066 Brazil

D.2 24-HOUR TECHNICAL SUPPORT

An electronic bulletin board (BBS) maintained by National Semiconductor may be
accessed over standard dial-up telephone lines 24-hours a day. The BBS capabilities
include a MESSAGE SECTION (electronic mail) for communications to and from
technical support personnel, and a FILE SECTION that contains valuable application
software and utilities. The minimum requirement for accessing the BBS is a Hayes
compatible modem. If you have a PC with a communications package, then you can
download files from the FILE SECTION. The BBS can be accessed at:

Canada/U.S. (800) NSC-MICRO
(800) 672-6427

Setup: 14.4 Baud
8-bit Data Length
No Parity
1 Stop Bit

Germany 49 8141 103-332

Setup: 14.4 Baud
8-bit Data Length
No Parity
1 Stop Bit

TECHNICAL SUPPORT D-1

INDEX

A
A/D converter registers
COP888CF 12-14
AC power control 13-12
Accumulator 2-8
Accumulator Bit Manipulation instructions 9-8
Add (ADD) 9-14
Add with Carry (ADC) 9-13
Addressing modes 9-1, 9-2
Alternate functions 7-4
Port G 7-4
ALU 2-12
ALU interface 2-13
Analog-to-digital conversion 13-15
using on-chip comparator 13-15
Analog-to-digital converter
accuracy 12-18
channel selection 12-16
continuous mode 12-16
COP888CF 12-13
hardware considerations 12-18
multi-channel conversion 12-17
operation 12-13
prescaler selection 12-15
single conversion 12-16
speed 12-18
And (AND) 9-15
And, Skip if Zero (ANDSZ) 9-16
Architecture 2-1
Arithmetic instructions 9-7
Arithmetic Logic Unit (ALU) 2-12

B

Battery-powered weight measurement 13-17
Binary division 13-25
Binary multiplication 13-24
Binary/BCD arithmetic operations 13-21
Block diagram 8-2

COP888 2-2

COP888 interrupt 3-2

COP888CF 12-1

COP888CG/EG/CS 11-2

COP888CL 10-1

idle timer 4-11

MICROWIRE/PLUS circuit 5-2
Board layout 13-35
Break trigger A-1
Breakpoints A-1
BUSY 2-9
Busy flag and interrupt 5-5

(o]
C (see Carry Flag)
Capacitive decoupling 13-35
Carry Flag 2-9
Characterization data C-1
Clear Accumulator (CLR) 9-17
Clear RAM 13-21
Clock Monitor 8-1

configuration 8-3
operation 8-3
Clock options 2-22
Clock-stopping method 6-1
CMPSL 11-9
CNTRL register 2-9
Comparator
COP888CG/EG/CS 11-16
select register 11-9
Complex trigger A-1
Conditional instructions 9-9
Context switching 3-4
Control logic 2-12, 2-13
Control registers 2-9
COP888 port structure 7-1
COP888 block diagram 2-2
COPS888CF 12-1
A/D accuracy 12-18
A/D channel selection 12-16
A/D continuous mode 12-16
A/D converter registers 12-14
A/D multi-channel conversion 12-17
A/D operation 12-13
A/D prescaler selection 12-15
A/D single conversion 12-16
A/D speed 12-18
analog-to-digital converter 12-13
block diagram 12-1
data memory 12-7
emulation devices 12-20
hardware considerations 12-18
input/output ports 12-5
interrupts 12-12
mask options 12-19
memory map 12-9
pin descriptions 12-2
pinouts/packages 12-2
program memory 12-6
register bit maps 12-7
reset 12-11
COP888CG/EG/CS 11-1
block diagrams 11-2
comparator 11-16
data memory 11-8
emulation devices 11-40
input/output ports 11-6
interrupts 11-16
mask options 11-39
memory map 11-13
pin descriptions 11-3
pinouts/packages 11-3
program memory 11-7
register bit maps 11-8
reset 11-15
UART 11-19
COP888CL 10-1
block diagram 10-1
data memory 10-7
emulation devices 10-13

INDEX

input/output ports 10-5
interrupts 10-11
mask options 10-12
memory map 10-9
pin descriptions 10-2
pinouts/packages 10-2
program memory 10-6
register bit maps 10-7
reset 10-10

Core registers 2-8

CPU operation 2-12

Crystal oscillator 2-22

Data I/O B-1
Data memory 2-3
COP888CF 12-7
COP888CG/EG/CS 11-8
COP888CL 10-7
Data memory fetches 2-14
Data memory map 2-5
Data register 2-10
Data segment extension 2-6
Data segment extension register 2-11
Data memory pointers 2-11
Decimal Correct (DCOR) 9-18
Decoupling 13-35
capacitive 13-35
inductive 13-36
Decrement Accumulator (DEC) 9-19
Decrement Register and Skip if Zero (DRSZ) 9-20
Dedicated inputs 2-8
Dedicated outputs 2-8
Device-specific features 1-2
Disassembler A-2
Display drivers 5-1
DRSZ instruction 2-18

E
EEPROM 2-3, 5-1
Electric Field emissions 13-34
Electrical characterization data C-1

Electromagnetic interference (EMI) considerations 13-33

Emulation devices
COP888CF 12-20
COP888CG/EG/CS 11-40
COP888CL 10-13

Error handling 2-20

Error report on WDOUT 8-5

Exchange Memory with Accumulator (X) 9-60

Exclusive Or (XOR) 9-62

EXEN 2-9

EXPND 2-9

External event counter mode 4-5
example 13-11

External Interrupt Enable 2-9

External Interrupt Pending 2-9

F
Features
basic 1-1
device-specific 1-2

2 INDEX

list 1-3
Fetches
data memory 2-14
program memory 2-14
Five-cycle instructions 2-19
FLAG1 2-10
FLAG2 2-10
Four-cycle instructions 2-18

G
General-purpose timers 4-10
GIE 2-9
Global Interrupt Enable 2-9

H

Half-Carry Flag 2-9
HALT exit

using G7 pin 6-3

using multi-input wakeup 6-2

using Reset 6-2
Halt mode

entering 6-1

exiting 6-2
HALT/IDLE operation 6-4
Harvard architecture 2-1
HC (see Half-Carry Flag)
Hi-Z input 2-8

iceMASTER A-1
ICNTRL register 2-10
IDLE mode 6-3
Idle timer 4-11

block diagram 4-11
IEDG 2-9
If B Pointer Not Equal (IFBNE) 9-22
In-circuit emulator A-1
Increment Accumulator (INC) 9-28
Index registers 2-11
Inductive decoupling 13-36
Industrial timer 13-19
Input capture mode 4-7
Input protection 13-30
Input/output 7-1
Input/output ports

COP888CF 12-5

COP888CG/EG/CS 11-6

COP888CL 10-5
Instructions

ADC 9-13

ADD 9-14

AND 9-15

ANDSZ 9-16

bytes and cycles 9-64

CLR 9-17

DCOR 9-18

DEC 9-19

decoding 2-15

DRSZ 2-18, 9-20

execution 2-15

five-cycle 2-19

four-cycle 2-18

IFBIT 9-21

IFBNE 9-22

IFC 9-23

IFEQ 9-24

IFGT 9-25

IFNC 9-26

IFNE 9-27

INC 9-28

INTR 9-29

JID 2-17, 9-30

JMP 2-17, 9-31

JMPL 9-32

JP 2-17, 9-33

JSR 9-34

JSRL 9-35

LAID 2-17, 9-36

LD 9-37, 9-39, 9-40, 9-41

NOP 9-42

one-cycle 2-15

operations summary 9-63

OR 9-43

POP 2-18, 9-44

PUSH 2-18, 9-45

RBIT 9-46

RC 9-47

RET 9-48

RETI 9-49

RETSK 9-50

RLC 9-51

RPND 9-52

RRC 9-53

SBIT 9-54

SC 9-565

seven-cycle 2-20

single cycle 2-15

SUBC 9-56

SWAP 9-58

three-cycle 2-16

two-cycle 2-15

types 9-7

VIS 9-59

X 9-60

XOR 9-62
Interrupt Software Trap (INTR) 9-29
Interrupts 3-1

block diagram 3-2

COPB888CF 12-12

COP888CG/EG/CS 11-16

COP888CL 10-11

handling 2-20

maskable 3-5

non-maskable 3-7

priority 3-3

summary 3-10

vector table 3-4

JID instruction 2-17

JMP instruction 2-17

JP instruction 2-17

Jump Absolute (JMP) 9-31

Jump Absolute Long (JMPL) 9-32
Jump Indirect (JID) 9-30

Jump Relative (JP) 9-33

Jump Subroutine (JSR) 9-34
Jump Subroutine Long (JSRL) 9-35

L
LAID instruction 2-17
Load Accumulator (LD) 9-37
Load Accumulator Indirect (LAID) 9-36
Load and Exchange instructions 9-8
Load B Pointer (LD) 9-39
Load Memory (LD) 9-40
Load Register (LD) 9-41
Logical instructions 9-8

M
MAR (Memory Address Register) 2-14
Mask options
COP888CF 12-19
COP888CG/EG/CS 11-39
COP888CL 10-12
Maskable interrupts 3-5
Master mode operation 5-6
MDR (Memory Data Register) 2-12, 2-13, 2-14
Mechanical shielding 13-37
Memory
data 2-3
mapped I/O registers 2-7
organization 2-2
program 2-3
Memory Bit Manipulation instructions 9-9
Memory fetches 2-14
Memory map
basic 2-4
COP888CF 12-9
COP888CG/EG/CS 11-13
COP888CL 10-9
MetaLink A-1
MICROWIRE busy shifting flag 2-9
MICROWIRE/PLUS 5-1
busy flag and interrupt 5-5
circuit block diagram 5-2
continuous mode 13-3
fast burst output 13-4
interface 13-1
interface timing 5-3
master/slave protocol 13-1
Ports G configuration 5-4
register 2-12
theory of operation 5-2
timing 5-2
MSEL 2-9
Multi-input wakeup/interrupt 7-4

N
NMC93C06 Instruction Set 13-6
NMC93C06-COP888 interface 13-5
NMI 3-1, 3-9
exit from HALT/IDLE 6-4
NMIPND 3-9, 3-10
No Operation (NOP) 9-42
Non-maskable interrupt pending flags 3-7
Non-maskable interrupts 3-7

(o]
One-cycle instructions 2-15

INDEX

Opcodes 9-66

Or (OR) 9-43

Oscillator control 13-37
Output series resistance 13-36

P
PEN 2-10
Performance analyzer A-1
Pin descriptions
COP888CF 12-2
COP888CG/EG/CS 11-3
COP888CL 10-2
Pinouts/packages
COP888CF 12-2
COP888CG/EG/CS 11-3
COP888CL 10-2
POP instruction 2-18
Pop Stack (POP) 9-44
Ports
C17-2
D7-2
G17-3
alternate functions 7-4
method 6-2
17-3
L17-3
Power save modes 6-1
Power wakeup circuit 13-27
PPND 2-10
Program counter 2-9
Program memory 2-3
COP88S8CF 12-6
COP888CG/EG/CS 11-7
COP888CL 10-6
Program memory fetches 2-14
Programming examples 13-21
PSW register 2-9
Pulse Width Modulation 4-4
PUSH instruction 2-18
Push Stack (PUSH) 9-45
Push-pull 2-8

PWM mode (see Pulse Width Modulation)

R

RC oscillator 2-23
Reconfigurable input/output 2-7
Register bit maps

COPB888CF 12-7

COP888CG/EG/CS 11-8

COP888CL 10-7
Registers

CMPSL 11-9

CNTRL 2-9

control 2-9

data 2-10

data segment extension 2-11

ICNTRL 2-10
MICROWIRE/PLUS 2-12
PSW 2.9

timer 2-12

4 INDEX

Reset 2-21
COP888CF 12-11
COP888CG/EG/CS 11-15
COP888CL 10-10
Reset Carry (RC) 9-47
Reset Memory Bit (RBIT) 9-46
Reset Pending (RPND) 9-52
Return and Skip (RETSK) 9-50
Return from Interrupt (RETI) 9-49
Return from Subroutine (RET) 9-48
Rotate Accumulator Left Through Carry (RLC) 9-51
Rotate Accumulator Right Through Carry (RRC) 9-53

S
S register 2-6
Schmitt triggers 7-3
Set Carry (SC) 9-55
Set Memory Bit (SBIT) 9-54
Seven-cycle instructions 2-20
Simulator A-4
Single slope A/D conversion 13-15
Single-line assembler A-2
Single-step A-1
SK clock frequency 5-4
SLO0 2-9
SL1 2-9
Slave mode operation 5-7
Software trap 3-1, 3-8, 3-9
Stack Control instructions 9-8
Stack pointer 2-11
STPND 3-8
Subtract with Carry (SUBC) 9-56
Swap Nibbles of Accumulator (SWAP) 9-58

T
T1CO 2-9
T1C1 29
T1C2 2-10
T1C3 2-10
T1ENA 2-9
T1ENB 2-10
T1PNDA 2-9
T1PNDB 2-10
Telecommunications 5-1
Test Bit (IFBIT) 9-21
Test if Carry (IFC) 9-23
Test if Equal (IFEQ) 9-24
Test if Greater Than (IFGT) 9-25
Test If No Carry (IFNC) 9-26
Test If Not Equal (IFNE) 9-27
Three-cycle instructions 2-16
Timer capture example 13-9
Timer register 2-12
Timer T1A Interrupt Enable 2-9
Timer T1A Interrupt Pending 2-9
Timers 4-1

applications 13-9

block diagram 4-1
control bits 4-2
general-purpose 4-10
idle 4-11
operating modes 4-3
register addresses 4-10
Timing 5-2
Trace buffer A-1
Transfer-of Control instructions 9-7
Triac control 13-11
Two-cycle instructions 2-15

U
UART
asynchronous mode 11-24
attention mode 11-37
baud clock generation 11-30
baud select 11-23
break detection 11-38
break generation 11-38
control 11-24
COP888CG/EG/CS 11-19
data registers 11-23
diagnostic testing 11-37
error flags 11-36
framing formats 11-27, 11-28
HALT/IDLE mode reinitialization 11-29
interface 11-24
interrupts 11-36
operation overview 11-19
prescaler 11-23
prescaler factors 11-33
registers 11-20
reset initialization 11-29
status registers 11-24
synchronous mode 11-26
Universal Asynchronous Receiver Transmitter (see
UART)
uWEN 2-10
uWPND 2-10

\%
Vector Interrupt Select (VIS) 9-59
Vector table 3-2
VIS instruction 3-1, 3-2

Watchdog 8-1
block diagram 8-2
circuit 8-1
configuration 8-3
logic 8-2
operation 6-4, 8-1
reset circuit 13-30
WDOUT
error report 8-5
WDSVR 8-1
Weak pull-up 2-8
WKEDG 7-4
WKEN 7-4
WKPND 7-4

V/
Zero cross detection 13-17

INDEX

	03018967 national.tif
	03018968.tif
	03018969.tif
	03018970.tif
	03018971.tif
	03018972.tif
	03018973.tif
	03018974.tif
	03018975.tif
	03018976.tif
	03018977.tif
	03018978.tif
	03018979.tif
	03018980.tif
	03018981.tif
	03018982.tif
	03018983.tif
	03018984.tif
	03018985.tif
	03018986.tif
	03018987.tif
	03018988.tif
	03018989.tif
	03018990.tif
	03018991.tif
	03018992.tif
	03018993.tif
	03018994.tif
	03018995.tif
	03018996.tif
	03018997.tif
	03018998.tif
	03018999.tif
	03019000.tif
	03019001.tif
	03019002.tif
	03019003.tif
	03019004.tif
	03019005.tif
	03019006.tif
	03019007.tif
	03019008.tif
	03019009.tif
	03019010.tif
	03019011.tif
	03019012.tif
	03019013.tif
	03019014.tif
	03019015.tif
	03019016.tif
	03019017.tif
	03019018.tif
	03019019.tif
	03019020.tif
	03019021.tif
	03019022.tif
	03019023.tif
	03019024.tif
	03019025.tif
	03019026.tif
	03019027.tif
	03019028.tif
	03019029.tif
	03019030.tif
	03019031.tif
	03019032.tif
	03019033.tif
	03019034.tif
	03019035.tif
	03019036.tif
	03019037.tif
	03019038.tif
	03019039.tif
	03019040.tif
	03019041.tif
	03019042.tif
	03019043.tif
	03019044.tif
	03019045.tif
	03019046.tif
	03019047.tif
	03019048.tif
	03019049.tif
	03019050.tif
	03019051.tif
	03019052.tif
	03019053.tif
	03019054.tif
	03019055.tif
	03019056.tif
	03019057.tif
	03019058.tif
	03019059.tif
	03019060.tif
	03019061.tif
	03019062.tif
	03019063.tif
	03019064.tif
	03019065.tif
	03019066.tif
	03019067.tif
	03019068.tif
	03019069.tif
	03019070.tif
	03019071.tif
	03019072.tif
	03019073.tif
	03019074.tif
	03019075.tif
	03019076.tif
	03019077.tif
	03019078.tif
	03019079.tif
	03019080.tif
	03019081.tif
	03019082.tif
	03019083.tif
	03019084.tif
	03019085.tif
	03019086.tif
	03019087.tif
	03019088.tif
	03019089.tif
	03019090.tif
	03019091.tif
	03019092.tif
	03019093.tif
	03019094.tif
	03019095.tif
	03019096.tif
	03019097.tif
	03019098.tif
	03019099.tif
	03019100.tif
	03019101.tif
	03019102.tif
	03019103.tif
	03019104.tif
	03019105.tif
	03019106.tif
	03019107.tif
	03019108.tif
	03019109.tif
	03019110.tif
	03019111.tif
	03019112.tif
	03019113.tif
	03019114.tif
	03019115.tif
	03019116.tif
	03019117.tif
	03019118.tif
	03019119.tif
	03019120.tif
	03019121.tif
	03019122.tif
	03019123.tif
	03019124.tif
	03019125.tif
	03019126.tif
	03019127.tif
	03019128.tif
	03019129.tif
	03019130.tif
	03019131.tif
	03019132.tif
	03019133.tif
	03019134.tif
	03019135.tif
	03019136.tif
	03019137.tif
	03019138.tif
	03019139.tif
	03019140.tif
	03019141.tif
	03019142.tif
	03019143.tif
	03019144.tif
	03019145.tif
	03019146.tif
	03019147.tif
	03019148.tif
	03019149.tif
	03019150.tif
	03019151.tif
	03019152.tif
	03019153.tif
	03019154.tif
	03019155.tif
	03019156.tif
	03019157.tif
	03019158.tif
	03019159.tif
	03019160.tif
	03019161.tif
	03019162.tif
	03019163.tif
	03019164.tif
	03019165.tif
	03019166.tif
	03019167.tif
	03019168.tif
	03019169.tif
	03019170.tif
	03019171.tif
	03019172.tif
	03019173.tif
	03019174.tif
	03019175.tif
	03019176.tif
	03019177.tif
	03019178.tif
	03019179.tif
	03019180.tif
	03019181.tif
	03019182.tif
	03019183.tif
	03019184.tif
	03019185.tif
	03019186.tif
	03019187.tif
	03019188.tif
	03019189.tif
	03019190.tif
	03019191.tif
	03019192.tif
	03019193.tif
	03019194.tif
	03019195.tif
	03019196.tif
	03019197.tif
	03019198.tif
	03019199.tif
	03019200.tif
	03019201.tif
	03019202.tif
	03019203.tif
	03019204.tif
	03019205.tif
	03019206.tif
	03019207.tif
	03019208.tif
	03019209.tif
	03019210.tif
	03019211.tif
	03019212.tif
	03019213.tif
	03019214.tif
	03019215.tif
	03019216.tif
	03019217.tif
	03019218.tif
	03019219.tif
	03019220.tif
	03019221.tif
	03019222.tif
	03019223.tif
	03019224.tif
	03019225.tif
	03019226.tif
	03019227.tif
	03019228.tif
	03019229.tif
	03019230.tif
	03019231.tif
	03019232.tif
	03019233.tif
	03019234.tif
	03019235.tif
	03019236.tif
	03019237.tif
	03019238.tif
	03019239.tif
	03019240.tif
	03019241.tif
	03019242.tif
	03019243.tif
	03019244.tif
	03019245.tif
	03019246.tif
	03019247.tif
	03019248.tif
	03019249.tif
	03019250.tif
	03019251.tif
	03019252.tif
	03019253.tif

